On ξ quadratic stochastic operators and related algebras /

In this thesis, we start to study a class of quadratic stochastic operators called (s) ξ - QSO. We first classify them into 20 non-conjugate classes. Moreover, we investigate the dynamics of four classes of (s) ξ -QSO. Furthermore, we study another class of quadratic stochastic operator called (a) ξ...

Full description

Saved in:
Bibliographic Details
Main Author: Qaralleh, Izzat Salem
Format: Thesis
Language:English
Published: Kuala Lumpur : Kulliyyah of Science, International Islamic University Malaysia, 2014
Subjects:
Online Access:Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 023580000a22002770004500
008 171215t2014 my a g m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
043 |a a-my--- 
050 |a QA274.2 
100 1 |a Qaralleh, Izzat Salem 
245 1 |a On ξ quadratic stochastic operators and related algebras /  |c by Izzat Salem Qaralleh 
260 |a Kuala Lumpur :  |b Kulliyyah of Science, International Islamic University Malaysia,  |c 2014 
300 |a xi, 182 leaves :  |b ill. ;  |c 30cm. 
502 |a Thesis (Ph.D)--International Islamic University Malaysia, 2014. 
504 |a Includes bibliographical references (leaves 159-162). 
520 |a In this thesis, we start to study a class of quadratic stochastic operators called (s) ξ - QSO. We first classify them into 20 non-conjugate classes. Moreover, we investigate the dynamics of four classes of (s) ξ -QSO. Furthermore, we study another class of quadratic stochastic operator called (a) ξ -QSO. We also classify (a) ξ -QSO into two non-conjugate classes. Further, we investigate the dynamics of these classes. After that, we move to study the existence of associativity and derivations of genetic algebras generated by the four classes of (s) ξ . Moreover, we figure out the connection between genetic and evolution algebras. Thereafter, we reduce the study of arbitrary evolution algebra of permutations into two special evolution algebras. Furthermore, we establish some properties of three-dimensional evolution algebras whose each basis element has infinite period. At end, we classify three dimension nilpotent and solvable evolution algebras. 
596 |a 1 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Kulliyyah of Science  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Kulliyyah of Science 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/6131  |z Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library. 
900 |a sbh-lfr-hm 
999 |c 437348  |d 470043 
952 |0 0  |6 T QA 000274.2 Q13O 2014  |7 0  |8 THESES  |9 759661  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o t QA 274.2 Q13O 2014  |p 11100320489  |r 2018-02-20  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF QA 274.2 Q13O 2014  |7 0  |8 THESES  |9 852226  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf QA 274.2 Q13O 2014  |p 11100320490  |r 2018-03-08  |t 1  |v 0.00  |y THESISDIG