Automatic pulmonary nodule detection from radiography using histograms of oriented gradients descriptors /

A chest X-ray examination is a painless, non-invasive, and cost effective medical examination performed at present day. A pulmonary nodule is a small round lesion or mass in the lungs which can be indicative of an infection or a neoplasm. Chest X-rays can be used to diagnose pulmonary nodules. State...

Full description

Saved in:
Bibliographic Details
Main Author: Naing, Wai Yan Nyein
Format: Thesis
Language:English
Published: Kuala Lumpur : Kulliyyah of Engineering, International Islamic University Malaysia, 2015
Subjects:
Online Access:http://studentrepo.iium.edu.my/handle/123456789/4361
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 027700000a22002770004500
008 150618t2015 my a g m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
043 |a a-my--- 
050 0 0 |a RC941 
100 1 |a Naing, Wai Yan Nyein 
245 1 |a Automatic pulmonary nodule detection from radiography using histograms of oriented gradients descriptors /  |c by Wai Yan Nyein Naing 
260 |a Kuala Lumpur :  |b Kulliyyah of Engineering, International Islamic University Malaysia,   |c 2015 
300 |a xvi, 206 leaves :  |b ill. ;  |c 30cm. 
502 |a Thesis (MSMCT)--International Islamic University Malaysia, 2015. 
504 |a Includes bibliographical references (leaves 109-123). 
520 |a A chest X-ray examination is a painless, non-invasive, and cost effective medical examination performed at present day. A pulmonary nodule is a small round lesion or mass in the lungs which can be indicative of an infection or a neoplasm. Chest X-rays can be used to diagnose pulmonary nodules. State-of-the-art automatic pulmonary nodule detection techniques are agonized by the problems posed by noise, local-global feature dilemma, and the bias-and-variance dilemma. To evade these problems, this project proposes a three-layered framework to perform automatic diagnosis of pulmonary nodules. The first layer performs hybrid Haar-wavelet based image enhancement and contour-based lung field segmentation. The second layer extracts histogram of oriented gradient descriptors from a pre-processed X-ray image and compresses the high-dimensional descriptors onto a low dimensional manifold using codec manifold neural network. Finally, the third layer classifies whether the X-ray contains any signs of nodules using an ensemble of partial decision trees. Experiments have been carried out on three X-ray datasets. The proposed system was found to outperform the state-of-the-art systems The results demonstrate the efficacy of the proposed nodule detection framework. The proposed pulmonary nodule detection can be integrated with the existing X-ray equipment in hospitals in order to perform rapid diagnosis. 
596 |a 1 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Department of Mechatronics Engineering  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Department of Mechatronics Engineering 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/4361 
900 |a sbh-ls 
999 |c 437411  |d 468323 
952 |0 0  |6 T RC 000941 N157A 2015  |7 0  |8 THESES  |9 760414  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o t RC 941 N157A 2015  |p 11100340925  |r 2017-10-20  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF RC 941 N157A 2015  |7 0  |8 THESES  |9 853502  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf RC 941 N157A 2015  |p 11100340926  |r 2017-10-26  |t 1  |v 0.00  |y THESISDIG