Deep learning-based waterline detection for autonomous surface vessel navigation /
Visual-based obstacle detection from an autonomous surface vessel (ASV) is a complex task due to high variance of scene properties such as different illumination and presence of reflections. One approach in implementing the task is through extracting waterlines to enable inferring of vessel orientat...
Saved in:
主要作者: | Muhammad Ammar Mohd Adam (Author) |
---|---|
格式: | Thesis |
語言: | English |
出版: |
Kuala Lumpur :
Kulliyyah of Engineering, International Islamic University Malaysia,
2020
|
主題: | |
在線閱讀: | http://studentrepo.iium.edu.my/handle/123456789/10668 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Hybrid Balance Artificial Potential Field Navigation System For An Autonomous Surface Vessel In Riverine Environment
由: Jianhong, Mei
出版: (2019) -
Deep reinforcement learning for autonomous driving /
由: Osman, Hassan Abdalla Abdelkarim
出版: (2019) -
Microbial assessment of dental unit waterline system (DUWS) /
由: Chua, Chong Sing
出版: (2012) -
Fuzzy PID based navigation of autonomous mobile robot
由: Biswas, Hasin Abrar
出版: (2022) -
Autonomous interpreting peripheral blood film based on deep learning algorithm
由: Salehuddin, Nur Anisah
出版: (2020)