Real time lane detection on embedded platform for advanced driver assistance system /

Vision-based Lane Departure Warning (LDW) system is an important module in Advanced Driver Assistance System (ADAS) to promote safe driving. In practice, it is exceptionally hard to accurately and efficiently detect lanes due to a variety of complex noise such as environmental variability. However,...

Full description

Saved in:
Bibliographic Details
Main Author: Nurul Syuhada binti Ahmad Rudin (Author)
Format: Thesis
Language:English
Subjects:
Online Access:http://studentrepo.iium.edu.my/handle/123456789/5171
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 047200000a22004210004500
008 191108s2019 my a f m 000 0 eng d
040 |a UIAM  |b eng  |e rda 
041 |a eng 
043 |a a-my--- 
050 1 0 |a TL272.57 
100 0 |a Nurul Syuhada binti Ahmad Rudin,  |e author  |9 19463 
245 1 0 |a Real time lane detection on embedded platform for advanced driver assistance system /  |c by Nurul Syuhada binti Ahmad Rudin 
264 1 |a Kuala Lumpur :  |b Kulliyyah of Engineering, International Islamic University Malaysia,  |c 2019 
300 |a xiii, 77 leaves :  |b colour illustrations ;  |c 30cm. 
336 |2 rdacontent  |a text 
337 |2 rdamedia  |a unmediated 
337 |2 rdamedia  |a computer 
338 |2 rdacarrier  |a volume 
338 |2 rdacarrier  |a online resources 
347 |2 rdaft  |a text file  |b PDF 
500 |a Abstracts in English and Arabic. 
500 |a "A thesis submitted in fulfilment of the requirement for the degree of Master of Science in (Mechatronics Engineering)." --On title page. 
502 |a Thesis (MSMCT)--International Islamic University Malaysia, 2019. 
504 |a Includes bibliographical references (leaves 72-76). 
520 |a Vision-based Lane Departure Warning (LDW) system is an important module in Advanced Driver Assistance System (ADAS) to promote safe driving. In practice, it is exceptionally hard to accurately and efficiently detect lanes due to a variety of complex noise such as environmental variability. However, image processing techniques have shown promising and reliable outcome in detecting lanes during non-ideal conditions such as faded lane marker. Although there are various researches on LDW system, they either suffer from computational complexity or not robust in degraded conditions. In this study, research and problem related to lane detection algorithm are highlighted and implementation of algorithm on embedded platform for real-time application is proposed. General process of lane detection can be divided into the following stages; pre-processing stage, colour conversion, selection of a region of interest and feature extraction. In pre-processing phase of algorithm, the input image was resized, filtered by the bilateral filter, and region of interest was selected to obtain the bird's eye view image. After that the top down view image is converted to Hue-Saturation-Value (HSV) colour space for the process of computing the binary image. As for lane feature extraction, from the binary image obtained, sliding window method was used and the lane is fitted by using 2nd degree of polynomial equation. In regard to the lane departure, the decision is made from lane measurement and observe the host vehicle is near to lane boundary or not. Then, a warning is sent to the driver visually. After the algorithm development, the algorithm was deployed to NXP development board with 64-bit Quad ARM Cortex-A53 @ 1000 MHz and 32-bit ARM Cortex-M4 @ 133 MHz and Renesas R-Car H2 with Quad-core ARM Cortex-A15 up to 1.4GHz for real-time application. The proposed algorithm is programmed in C++ language, which is compatible across multiple platforms. Optimization performance was performed to increase the frame rate of the algorithm while maintaining the percentage of detection accuracy. The result shows accuracy of detection is 90% when tested with Caltech dataset and the frame rate when running on embedded platform is 16 frame per second for NXP development board and 14 frame per second for Renesas R-Car H2 on images with the resolution of 256 by 144. In conclusion, the objectives of the research have been met. The algorithm for the LDW system has been developed and be ported to the embedded platform for real time implementation. 
650 0 |a Driver assistance systems  |9 19464 
650 0 |a Automobiles  |x Automatic control  |x Safety measures  |9 19465 
650 0 |a Automobiles  |x Collision avoidance systems  |9 19466 
650 0 |a Motor vehicles  |x Automatic location systems  |9 19467 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Department of Mechatronics Engineering  |z IIUM  |9 1666 
710 2 |a International Islamic University Malaysia.  |b Department of Mechatronics Engineering 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/5171 
900 |a sz-aaz-hm-nbm 
942 |2 lcc  |c THESIS 
999 |c 441739  |d 471979 
952 |0 0  |1 0  |2 lcc  |4 0  |6 T T L 00272.00057 N09746R 02019  |7 3  |8 IIUMTHESIS  |9 763037  |a IIUM  |b IIUM  |c THESIS  |d 2022-10-11  |g 0.00  |o t TL 272.57 N9746R 2019  |p 11100409728  |r 1900-01-02  |t 1  |v 0.00  |y THESIS 
952 |0 0  |1 0  |2 lcc  |4 0  |6 TS C D F TL 00272.00057 N09746R 02019  |7 3  |8 IIUMTHESIS  |9 858805  |a IIUM  |b IIUM  |c THESIS  |d 2022-10-11  |g 0.00  |o ts cdf TL 272.57 N9746R 2019  |p 11100409729  |r 1900-01-02  |t 1  |v 0.00  |y THESISDIG