Evolutionary deep belief network with bootstrap sampling for imbalanced class data /
Imbalanced class data is a frequent problem faced in classification task. Imbalanced class occurs when the classes in the dataset has a huge distribution gap between them. The class with the most instances is called the majority class, while the class with the least instances is called the minority...
محفوظ في:
المؤلف الرئيسي: | A'inur A'fifah Amri (مؤلف) |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
Kuala Lumpur :
Kulliyyah of Information and Computer Technology, International Islamic University Malaysia,
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://studentrepo.iium.edu.my/handle/123456789/5376 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Data sampling methods on imbalanced datasets for pneumonia detection in covid-19 patients
بواسطة: Dzulkefli, Syasya Farina
منشور في: (2022) -
Modeling Of Biopolymerization Process Using First Principle Model And Bootstrap Re-Sampling Neural Network
بواسطة: Noor, Rabiatul 'Adawiah Mat
منشور في: (2011) -
An enhanced resampling technique for imbalanced data sets
بواسطة: Maisarah, Zorkeflee
منشور في: (2015) -
Estimating function bootstrap for correlated data /
بواسطة: Chen, Feng
منشور في: (2001) -
Generative Adversarial Network and Fuzzy ARTMAP for imbalanced data classification in condition monitoring
بواسطة: Chang, Timothy Zhi Wei
منشور في: (2023)