A-model with potts competing interactions on Cayley Tree of Order Two : ground states and phase transitions /

In this research, we consider the λ-model with and without competing interaction on Cayley tree of order two. Description of ground states becomes one of the main elements to study as phase diagram of Gibbs measure for a Hamiltonian is close to the phase diagram of isolated ground states of the Hami...

Full description

Saved in:
Bibliographic Details
Main Author: Mohd Hakim Jamil (Author)
Format: Thesis
Language:English
Published: Kuantan, Pahang : Kulliyyah of Science, Internnational Islamic University Malaysia, 2021
Subjects:
Online Access:http://studentrepo.iium.edu.my/handle/123456789/10976
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 036920000a22004210004500
008 220414s2021 my a f m 000 0 eng d
040 |a UIAM  |b eng  |e rda 
041 |a eng 
043 |a a-my---  
050 0 0 |a QA273.6 
100 1 |a Mohd Hakim Jamil  |9 5146  |e author 
245 1 |a A-model with potts competing interactions on Cayley Tree of Order Two :   |b ground states and phase transitions /  |c by Mohd Hakim Jamil 
264 1 |a Kuantan, Pahang :   |b Kulliyyah of Science, Internnational Islamic University Malaysia,   |c 2021 
300 |a xiii, 74 leaves :  |b illustrations ;  |c 30 cm. 
336 |2 rdacontent  |a text 
337 |2 rdamedia  |a unmediated 
337 |2 rdamedia  |a computer 
338 |2 rdacarrier  |a volume 
338 |2 rdacarrier  |a online resource 
347 |2 rdaft  |a text file  |b PDF 
500 |a Abstracts in English and Arabic. 
500 |a "A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (Computational and Theoretical Sciences)." --On title page. 
502 |a Thesis (Ph.D)--International Islamic University Malaysia, 2021. 
504 |a Includes bibliographical references (leaves 69-71). 
520 |a In this research, we consider the λ-model with and without competing interaction on Cayley tree of order two. Description of ground states becomes one of the main elements to study as phase diagram of Gibbs measure for a Hamiltonian is close to the phase diagram of isolated ground states of the Hamiltonian. For the λ-model on infinite Cayley tree, we describe the set of periodic and weakly periodic ground states corresponding normal subgroup of the Cayley tree group representation. We construct 81 different combination of configurations and classify the configurations under 10 different regions so that the configurations will achieve ground states. We describe periodic and weakly periodic ground states for the considered model by using periodic and weakly periodic configurations. For the second result of the research, we consider λ-model with competing Potts interaction on Cayley tree of order two. As explained in previous section, we describe the periodic ground states for the considered model. Note that for this model, we have 12 different regions for the configurations to achieve ground states. For some domain of interactions strength, the configuration of periodic ground states cannot be achieved. By using Kolmogorov criteria, Gibbs measures for this model was described by deriving infinite volume distribution using given finite-dimensional distributions and find the probability measures with given conditional probability. By considering translation invariant Gibbs measure, we analyse the system of equations derived and study the phase transition phenomenon by proving the existence of multiple translation-invariant solutions for the system of equations. Phase transitions occurs if there exist two or more solutions. 
650 0 |a Probability measures  |9 13401 
650 0 |a Lattice theory  |9 3473 
650 0 |a Gibbs' equation  |9 13402 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Kulliyyah of Science  |z IIUM  |9 4758 
700 1 |a Pah Chin Hee  |e degree supervisor  |9 5163 
700 1 |a Farrukh Mukhamedov  |e degree supervisor  |9 5164 
710 2 |a International Islamic University Malaysia.  |b Kulliyyah of Science  |9 4761 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/10976 
900 |a sz-asbh 
942 |2 lcc  |c THESIS  |n 0 
999 |c 499883  |d 533298 
952 |0 0  |1 0  |2 lcc  |4 0  |6 T Q A 00273.00006 M00697M 02021  |7 3  |8 IIUMTHESIS  |9 969058  |a KIMC  |b KIMC  |c CLOSEACCES  |d 2022-06-27  |g 0.00  |l 1  |o t QA 273.6 M697M 2021  |p 11100429127  |r 2022-10-20  |s 2022-10-20  |t 1  |v 0.00  |y THESIS