Speech emotion recognition and depression prediction using deep neural networks /

Speech signals contain ample information from which computers can gain insight into the user's state, including emotion recognition and depression prediction. The applications are numerous, from customer service to suicide prevention due to depression. In this research, we propose several deep-...

Full description

Saved in:
Bibliographic Details
Main Author: AlGhifari, Muhammad Fahreza (Author)
Format: Thesis
Language:English
Subjects:
Online Access:http://studentrepo.iium.edu.my/handle/123456789/10994
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 035280000a22004210004500
008 220425s2021 my a f m 000 0 eng d
040 |a UIAM  |b eng  |e rda 
041 |a eng 
043 |a a-my---  
050 0 0 |a TK7882.S65 
100 1 |a AlGhifari, Muhammad Fahreza   |9 7437  |e author 
245 1 0 |a Speech emotion recognition and depression prediction using deep neural networks /  |c by Muhammad Fahreza AlGhifari 
264 |a Kuala Lumpur :  |b Kulliyyah of Engineering, International Islamic University Malaysia,  |c 2021 
300 |a xv, 103 leaves :  |b colour illustrations ;  |c 30 cm. 
336 |2 rdacontent  |a text 
337 |2 rdamedia  |a unmediated 
337 |2 rdamedia  |a computer 
338 |2 rdacarrier  |a volume 
338 |2 rdacarrier  |a online resource 
347 |2 rdaft  |a text file  |b PDF 
500 |a Abstracts in English and Arabic. 
500 |a "A thesis submitted in fulfilment of the requirement for the degree of Master of Computing (Computer Science and Information Technology)." --On title page. 
502 |a Thesis (MSCIE)--International Islamic University Malaysia, 2021. 
504 |a Includes bibliographical references (leaves 97-103). 
520 |a Speech signals contain ample information from which computers can gain insight into the user's state, including emotion recognition and depression prediction. The applications are numerous, from customer service to suicide prevention due to depression. In this research, we propose several deep-learning-based methodologies to detect emotion, as well as depression. Deep neural networks variations such as deep feedforward networks and convolutional networks were used. The deep learning model training, multi-languages emotion and depression database have been utilized, using well-known databases such as the Berlin Emotion Database and DAIC-WOZ Depression Dataset. For speech emotion recognition, the algorithm yields an accuracy of 80.5% across 4 languages, English, German, French and Italian. For depression detection, the current algorithm obtains an accuracy of 60.1% tested with the DAIC-WOZ dataset. This research has also created the Sorrow Analysis Dataset – an English depression audio dataset that contains 64 individuals samples of depressed and not-depressed. Further testing achieved an average accuracy of 97% with 5-fold validation using 1-dimensional convolutional networks. Finally, a prototype currently in development with Skymind Xpress.ai is presented, outlining the design and possible applications in the real world. It has been shown that the model is capable of performing both training and inference on a Raspberry Pi 3B+. 
650 0 |a Speech processing systems  |9 4163 
650 0 |a Signal processing  |x Digital techniques  |9 10118 
650 0 |a Neural networks (Computer science)  |9 4136 
690 |a Dissertations, Academic  |x Department of Electrical and Computer Engineering  |z IIUM  |9 4446 
700 1 |a Teddy Surya Gunawan  |e degree supervisor  |9 4447 
700 |a Mimi Aminah Wan Nordin  |e degree supervisor  |9 7438 
700 |a Nik Nur Wahidah Nik Hashim  |e degree supervisor  |9 7439 
710 2 |a International Islamic University Malaysia.  |b Department of Electrical and Computer Engineering  |9 4449 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/10994 
900 |a sz-asbh 
942 |2 lcc  |c THESIS  |n 0 
999 |c 502840  |d 534257 
952 |0 0  |1 0  |2 lcc  |4 0  |6 T T K7882 S65 G00423S 02021  |7 3  |8 IIUMTHESIS  |9 982085  |a IIUM  |b IIUM  |c THESIS  |d 2022-07-13  |g 0.00  |o t TK 7882 S65 G423S 2021  |p 11100437191  |r 1900-01-02  |t 1  |v 0.00  |y THESIS