Monte Carlo Simulations Of Avalanche Multiplication, Noise And Speed In Submicron InP

A stochastic nature of avalanche photodiode (APD) model is developed using Monte Carlo method to study the avalanche characteristics in submicron InP p= -i- n+ diodes. The avalanche characteristics such as multiplication gain, excess noise factor and avalanche built-up time in submicron InP p+ -i-n+...

Full description

Saved in:
Bibliographic Details
Main Author: You , Ah Heng
Format: Thesis
Published: 2005
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A stochastic nature of avalanche photodiode (APD) model is developed using Monte Carlo method to study the avalanche characteristics in submicron InP p= -i- n+ diodes. The avalanche characteristics such as multiplication gain, excess noise factor and avalanche built-up time in submicron InP p+ -i-n+ diodes are presented. A realistic FUll Band Monte Carlo (FBMC) model using empirical local pseudopotential band structure is used to simulate multiplication gain, excess noise factor and time response of InP p+ -i-n+ diodes. A simple and fast Random Path Length (RPL) model incorporating the dead-space effect is developed to reproduce the avalanche characteristics of short InP p+ -i-n+ diodes.