Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin

Transportation is important in our daily lives. Nowadays, in Malaysia the usage of vehicle has increased tremendously because of the population growth and human needs. Due to that, Malaysian has produce many types of vehicles to be used. Recently, for each vehicles the license plate has a lot of dif...

Full description

Saved in:
Bibliographic Details
Main Author: Mohd Ariffin, Muhammad Adib
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/14540/1/14540.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uitm-ir.14540
record_format uketd_dc
spelling my-uitm-ir.145402023-10-09T01:32:30Z Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin 2015 Mohd Ariffin, Muhammad Adib Malaysia Malaysia Transportation is important in our daily lives. Nowadays, in Malaysia the usage of vehicle has increased tremendously because of the population growth and human needs. Due to that, Malaysian has produce many types of vehicles to be used. Recently, for each vehicles the license plate has a lot of different style. Therefore, it is difficult for the authorities to detect and recognize the license plate for security purposes. The objective of this project is to propose a technique that can be used for detection and recognition of license plate. License Plate Recognition (LPR) System is one kind of Intelligent Transport System which can be considered interesting because of its potential application. In the LPR system there are several phases for the detection and recognition of license plate such as image acquisition, pre-processing, segmentation, character segmentation and recognition. For each phase there are technique used to obtain good performance of the license plate detection and character recognition. In this project, connected component analysis for plate recognition and multilayer perceptron neural network (MLPNN) for character recognition is used. From 100 image of vehicles license plate that have been captured for this project, the result for the plate recognition using the required technique is 37% accurate whereas the result for the character recognition using the neural network tool is 100% recognizable from the dataset that is used. The overall result is very satisfying in which most image of license plate captured can be recognize. Finally, this intelligent transportation system is significant in areas of security access control or law enforcement. 2015 Thesis https://ir.uitm.edu.my/id/eprint/14540/ https://ir.uitm.edu.my/id/eprint/14540/1/14540.pdf text en public other degree Universiti Teknologi MARA Faculty of Computer and Mathematical Sciences
institution Universiti Teknologi MARA
collection UiTM Institutional Repository
language English
topic Malaysia
Malaysia
spellingShingle Malaysia
Malaysia
Mohd Ariffin, Muhammad Adib
Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin
description Transportation is important in our daily lives. Nowadays, in Malaysia the usage of vehicle has increased tremendously because of the population growth and human needs. Due to that, Malaysian has produce many types of vehicles to be used. Recently, for each vehicles the license plate has a lot of different style. Therefore, it is difficult for the authorities to detect and recognize the license plate for security purposes. The objective of this project is to propose a technique that can be used for detection and recognition of license plate. License Plate Recognition (LPR) System is one kind of Intelligent Transport System which can be considered interesting because of its potential application. In the LPR system there are several phases for the detection and recognition of license plate such as image acquisition, pre-processing, segmentation, character segmentation and recognition. For each phase there are technique used to obtain good performance of the license plate detection and character recognition. In this project, connected component analysis for plate recognition and multilayer perceptron neural network (MLPNN) for character recognition is used. From 100 image of vehicles license plate that have been captured for this project, the result for the plate recognition using the required technique is 37% accurate whereas the result for the character recognition using the neural network tool is 100% recognizable from the dataset that is used. The overall result is very satisfying in which most image of license plate captured can be recognize. Finally, this intelligent transportation system is significant in areas of security access control or law enforcement.
format Thesis
qualification_name other
qualification_level Bachelor degree
author Mohd Ariffin, Muhammad Adib
author_facet Mohd Ariffin, Muhammad Adib
author_sort Mohd Ariffin, Muhammad Adib
title Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin
title_short Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin
title_full Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin
title_fullStr Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin
title_full_unstemmed Automatic license plate detection and recognition / Muhammad Adib Mohd Ariffin
title_sort automatic license plate detection and recognition / muhammad adib mohd ariffin
granting_institution Universiti Teknologi MARA
granting_department Faculty of Computer and Mathematical Sciences
publishDate 2015
url https://ir.uitm.edu.my/id/eprint/14540/1/14540.pdf
_version_ 1783733287715340288