Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail

Medium Density Fiberboard (MDF) is an alternative to solid wood used in furniture industries. As an engineered wood, MDF needs to establish the strength level to guarantee its quality. The test procedures for mechanical and physical properties of MDF should conform to a specified standard, prior to...

Full description

Saved in:
Bibliographic Details
Main Author: Sh. Ismail, Faridah
Format: Thesis
Language:English
Published: 2015
Online Access:https://ir.uitm.edu.my/id/eprint/15905/1/TP_FARIDAH%20SH.%20ISMAIL%20CS%2015_5.PDF
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uitm-ir.15905
record_format uketd_dc
spelling my-uitm-ir.159052022-03-10T01:59:30Z Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail 2015 Sh. Ismail, Faridah Medium Density Fiberboard (MDF) is an alternative to solid wood used in furniture industries. As an engineered wood, MDF needs to establish the strength level to guarantee its quality. The test procedures for mechanical and physical properties of MDF should conform to a specified standard, prior to releasing processed fiberboards for manufacturing. These tests are costly for they involve a high amount of resources, especially to research institutions. The primary aim of this research is to reduce testing time of three lengthy procedures; namely, 24-hour thickness swelling, 24-hour water absorption and 48-hour moisture content. An intelligent predictive model will replace the lengthy procedures by predicting the properties using known fiberboard characteristics. Back-propagation algorithm is a training method widely used in a multilayer perceptron Neural Network model. It optimizes random values for network weights and biases. However, the result normally faces local optima problems. This situation can be solved by embedding Genetic Algorithm (GA) in the network to replace back-propagation method. GA uses its reproduction capability to evolve from local minima scenario through crossover and mutation operators. Crossover and mutation activities contribute towards the quality of offspring and the operators’ probability rates control the chances of reproduction. Nevertheless, a fixed probability rates will cause convergence to beslower; for the activities constantly take place regardless of the changes in population fitness. Therefore, adjustment for suitable rates is important. Adaptive mechanism adapts the best parameters of current generation for optimum performance in the next generation. A variable rate adapts with the current population environment and therefore increases the searching ability. A new adaptive mechanism is done by scanning through the fitness mean and median of the population using the prediction error. Through rank selection technique, the chromosomes are sorted based on the fitness function to learn about the population of current generation. The adaptive mechanism on GA has allowed earlier convergence as compared to the ordinary GA with fixed probability rates. Comparison analysis shows the cost difference using the new method and the existing method to prove method efficiency. This research discusses three predictive models using multilayer perceptron NN with different optimizers. The first model uses BP; the second is hybrid GA-NN model; and finally a hybrid GA-NN model with an adaptive mechanism. The result has reduced time taken and experimental cost for the lengthy testing procedures. Consequently, during the experimental tests, pilot plants will only need to carry out tests, which consume minimum time to complete. The novelty of the research is a hybrid GA-NN model with new adaptive mechanism, along with contributions of reduction in experimental time and costs for MDF testing. 2015 Thesis https://ir.uitm.edu.my/id/eprint/15905/ https://ir.uitm.edu.my/id/eprint/15905/1/TP_FARIDAH%20SH.%20ISMAIL%20CS%2015_5.PDF text en public phd doctoral Universiti Teknologi MARA Faculty of Computer and Mathematical Sciences
institution Universiti Teknologi MARA
collection UiTM Institutional Repository
language English
description Medium Density Fiberboard (MDF) is an alternative to solid wood used in furniture industries. As an engineered wood, MDF needs to establish the strength level to guarantee its quality. The test procedures for mechanical and physical properties of MDF should conform to a specified standard, prior to releasing processed fiberboards for manufacturing. These tests are costly for they involve a high amount of resources, especially to research institutions. The primary aim of this research is to reduce testing time of three lengthy procedures; namely, 24-hour thickness swelling, 24-hour water absorption and 48-hour moisture content. An intelligent predictive model will replace the lengthy procedures by predicting the properties using known fiberboard characteristics. Back-propagation algorithm is a training method widely used in a multilayer perceptron Neural Network model. It optimizes random values for network weights and biases. However, the result normally faces local optima problems. This situation can be solved by embedding Genetic Algorithm (GA) in the network to replace back-propagation method. GA uses its reproduction capability to evolve from local minima scenario through crossover and mutation operators. Crossover and mutation activities contribute towards the quality of offspring and the operators’ probability rates control the chances of reproduction. Nevertheless, a fixed probability rates will cause convergence to beslower; for the activities constantly take place regardless of the changes in population fitness. Therefore, adjustment for suitable rates is important. Adaptive mechanism adapts the best parameters of current generation for optimum performance in the next generation. A variable rate adapts with the current population environment and therefore increases the searching ability. A new adaptive mechanism is done by scanning through the fitness mean and median of the population using the prediction error. Through rank selection technique, the chromosomes are sorted based on the fitness function to learn about the population of current generation. The adaptive mechanism on GA has allowed earlier convergence as compared to the ordinary GA with fixed probability rates. Comparison analysis shows the cost difference using the new method and the existing method to prove method efficiency. This research discusses three predictive models using multilayer perceptron NN with different optimizers. The first model uses BP; the second is hybrid GA-NN model; and finally a hybrid GA-NN model with an adaptive mechanism. The result has reduced time taken and experimental cost for the lengthy testing procedures. Consequently, during the experimental tests, pilot plants will only need to carry out tests, which consume minimum time to complete. The novelty of the research is a hybrid GA-NN model with new adaptive mechanism, along with contributions of reduction in experimental time and costs for MDF testing.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Sh. Ismail, Faridah
spellingShingle Sh. Ismail, Faridah
Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail
author_facet Sh. Ismail, Faridah
author_sort Sh. Ismail, Faridah
title Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail
title_short Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail
title_full Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail
title_fullStr Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail
title_full_unstemmed Neural network-based prediction models for physical properties of oil palm medium density fiberboard / Faridah Sh. Ismail
title_sort neural network-based prediction models for physical properties of oil palm medium density fiberboard / faridah sh. ismail
granting_institution Universiti Teknologi MARA
granting_department Faculty of Computer and Mathematical Sciences
publishDate 2015
url https://ir.uitm.edu.my/id/eprint/15905/1/TP_FARIDAH%20SH.%20ISMAIL%20CS%2015_5.PDF
_version_ 1783733465370329088