Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad
PVDF and PVDF/MgO nanocomposite thin films (MgO loading percentages 1, 3, 5, 7, 9 and 11 .wt%) were produced by spin coating on Al-glass substrates at 1500rpm. PVDF thin films were annealed subsequently at 70°C, 90°C, 110°C, 130°C, 150°C and 170°C, and then were cooled by fast cooling (FC) and slow...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2015
|
Online Access: | https://ir.uitm.edu.my/id/eprint/17798/2/TM_ADILLAH%20NURASHIKIN%20ARSHAD%20AS%2015_5.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-uitm-ir.17798 |
---|---|
record_format |
uketd_dc |
spelling |
my-uitm-ir.177982021-12-01T03:35:04Z Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad 2015 Arshad, Adillah Nurashikin PVDF and PVDF/MgO nanocomposite thin films (MgO loading percentages 1, 3, 5, 7, 9 and 11 .wt%) were produced by spin coating on Al-glass substrates at 1500rpm. PVDF thin films were annealed subsequently at 70°C, 90°C, 110°C, 130°C, 150°C and 170°C, and then were cooled by fast cooling (FC) and slow cooling (SC). PVDF thin films annealed at 70°C with SC resulted an increment in the dielectric constant from 10 (UNPVDF) to 14 at 1 kHz frequency with low tangent loss of 0.05 (UN-PVDF = 0.1). An increased in the resistivity value of 3.2x10⁴ Ω.cm (UN-PVDF = 2.0x10⁴ Ω.cm) was also observed. Upon incorporation of MgO nano-filler, PVDF/MgO(7%) nanocomposite thin film showed highest dielectric constant of 22 at similar frequency compared to UN-PVDF (10), with low dielectric loss (ɛ"= 0.08), as well as an increase in resistivity value in comparison to PVDF/MgO film of 1, 3, 5, 9 and 11 wt% MgO loading. Most importantly, PVDF/MgO(7%) nanocomposite thin film was found to be free from defects such as voids as evident from FE-SEM images of the films. The broad significant bonding peaks at 840 and 880 cm¯¹ as observed from the FTIR spectrum were representations of the - CH₂ and -CF₂ groups of PVDF film with an indication of high content of P-phase crystals, which contributed to an increment in the dielectric constant of PVDF/MgO(7%) nanocomposite thin films. Hence, by utilizing this two parameters, PVDF/MgO(7%) nanocomposite thin films and then annealed at 70°C with SC, resulted in the highest dielectric constant value of 27 for this study, with small increased in tangent loss of 0.13 at 1 kHz frequency. Resistivity value of annealed PVDF/MgO(7%) was also observed to increase (10.5x10⁴ Ω.cm). Thus, it was concluded that PVDF/MgO(7%) annealed at 70°C, and then cooled slow cooling was the optimized parameter conditions required for producing high dielectrics properties of PVDF nanocomposite thin films. 2015 Thesis https://ir.uitm.edu.my/id/eprint/17798/ https://ir.uitm.edu.my/id/eprint/17798/2/TM_ADILLAH%20NURASHIKIN%20ARSHAD%20AS%2015_5.pdf text en public mphil masters Universiti Teknologi MARA Faculty of Applied Sciences |
institution |
Universiti Teknologi MARA |
collection |
UiTM Institutional Repository |
language |
English |
description |
PVDF and PVDF/MgO nanocomposite thin films (MgO loading percentages 1, 3, 5, 7, 9 and 11 .wt%) were produced by spin coating on Al-glass substrates at 1500rpm. PVDF thin films were annealed subsequently at 70°C, 90°C, 110°C, 130°C, 150°C and 170°C, and then were cooled by fast cooling (FC) and slow cooling (SC). PVDF thin films annealed at 70°C with SC resulted an increment in the dielectric constant from 10 (UNPVDF) to 14 at 1 kHz frequency with low tangent loss of 0.05 (UN-PVDF = 0.1). An increased in the resistivity value of 3.2x10⁴ Ω.cm (UN-PVDF = 2.0x10⁴ Ω.cm) was also observed. Upon incorporation of MgO nano-filler, PVDF/MgO(7%) nanocomposite thin film showed highest dielectric constant of 22 at similar frequency compared to UN-PVDF (10), with low dielectric loss (ɛ"= 0.08), as well as an increase in resistivity value in comparison to PVDF/MgO film of 1, 3, 5, 9 and 11 wt% MgO loading. Most importantly, PVDF/MgO(7%) nanocomposite thin film was found to be free from defects such as voids as evident from FE-SEM images of the films. The broad significant bonding peaks at 840 and 880 cm¯¹ as observed from the FTIR spectrum were representations of the - CH₂ and -CF₂ groups of PVDF film with an indication of high content of P-phase crystals, which contributed to an increment in the dielectric constant of PVDF/MgO(7%) nanocomposite thin films. Hence, by utilizing this two parameters, PVDF/MgO(7%) nanocomposite thin films and then annealed at 70°C with SC, resulted in the highest dielectric constant value of 27 for this study, with small increased in tangent loss of 0.13 at 1 kHz frequency. Resistivity value of annealed PVDF/MgO(7%) was also observed to increase (10.5x10⁴ Ω.cm). Thus, it was concluded that PVDF/MgO(7%) annealed at 70°C, and then cooled slow cooling was the optimized parameter conditions required for producing high dielectrics properties of PVDF nanocomposite thin films. |
format |
Thesis |
qualification_name |
Master of Philosophy (M.Phil.) |
qualification_level |
Master's degree |
author |
Arshad, Adillah Nurashikin |
spellingShingle |
Arshad, Adillah Nurashikin Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad |
author_facet |
Arshad, Adillah Nurashikin |
author_sort |
Arshad, Adillah Nurashikin |
title |
Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad |
title_short |
Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad |
title_full |
Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad |
title_fullStr |
Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad |
title_full_unstemmed |
Enhanced dielectric properties of filled PVDF/MgO polymer nanocomposite / Adillah Nurashikin Arshad |
title_sort |
enhanced dielectric properties of filled pvdf/mgo polymer nanocomposite / adillah nurashikin arshad |
granting_institution |
Universiti Teknologi MARA |
granting_department |
Faculty of Applied Sciences |
publishDate |
2015 |
url |
https://ir.uitm.edu.my/id/eprint/17798/2/TM_ADILLAH%20NURASHIKIN%20ARSHAD%20AS%2015_5.pdf |
_version_ |
1783733601510096896 |