Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal

In the age of wide digital usage, text classification is one of the significant prominent attribute required in order to automatically arrange emails, articles, and other textual data in an organization. Unclassified data can lead to slower data retrieval thus a reliable method is required to effect...

Full description

Saved in:
Bibliographic Details
Main Author: Fadzal, Ahmad Nazmi
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/18846/1/18846.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uitm-ir.18846
record_format uketd_dc
spelling my-uitm-ir.188462022-11-14T02:46:28Z Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal 2017 Fadzal, Ahmad Nazmi Algorithms In the age of wide digital usage, text classification is one of the significant prominent attribute required in order to automatically arrange emails, articles, and other textual data in an organization. Unclassified data can lead to slower data retrieval thus a reliable method is required to effectively retrieve data efficiently and in systematic manner. Ant Colony Optimization (ACO) is a bio-inspired technique that was introduced to solve Non-Polynomial hard problem of high text data dimension that is similar to Traveling Salesman Problem (TSP) using probabilistic way. Pheromone concept is the main criterion that distinguish ACO to other algorithms. Based on the concept, pheromone saturation is used to combine stackable solution pattern that is discovered while straying to different term node to build a path. ACO classification accuracy is compared to Genetic Algorithm classifier which also a wrapper method. On integration of the technique, ACO is proposed to work in a multicore-multithread environment to gain additional execution time advantage. In multicore-multithread environment, the adjustment aims to make artificial ants communicate across the physical core of processor. As a trade to the investment for more computing power, the execution time reduction is expected to show an improvement without compromising the original classification accuracy. The unthreaded and multicore-multithreaded version of ACO was experimented and compared in term of accuracy and execution time. It was found that the result show a positive improvement. 2017 Thesis https://ir.uitm.edu.my/id/eprint/18846/ https://ir.uitm.edu.my/id/eprint/18846/1/18846.pdf text en public mphil masters Universiti Teknologi MARA Faculty of Computer and Mathematical Sciences Puteh, Mazidah
institution Universiti Teknologi MARA
collection UiTM Institutional Repository
language English
advisor Puteh, Mazidah
topic Algorithms
spellingShingle Algorithms
Fadzal, Ahmad Nazmi
Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal
description In the age of wide digital usage, text classification is one of the significant prominent attribute required in order to automatically arrange emails, articles, and other textual data in an organization. Unclassified data can lead to slower data retrieval thus a reliable method is required to effectively retrieve data efficiently and in systematic manner. Ant Colony Optimization (ACO) is a bio-inspired technique that was introduced to solve Non-Polynomial hard problem of high text data dimension that is similar to Traveling Salesman Problem (TSP) using probabilistic way. Pheromone concept is the main criterion that distinguish ACO to other algorithms. Based on the concept, pheromone saturation is used to combine stackable solution pattern that is discovered while straying to different term node to build a path. ACO classification accuracy is compared to Genetic Algorithm classifier which also a wrapper method. On integration of the technique, ACO is proposed to work in a multicore-multithread environment to gain additional execution time advantage. In multicore-multithread environment, the adjustment aims to make artificial ants communicate across the physical core of processor. As a trade to the investment for more computing power, the execution time reduction is expected to show an improvement without compromising the original classification accuracy. The unthreaded and multicore-multithreaded version of ACO was experimented and compared in term of accuracy and execution time. It was found that the result show a positive improvement.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Fadzal, Ahmad Nazmi
author_facet Fadzal, Ahmad Nazmi
author_sort Fadzal, Ahmad Nazmi
title Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal
title_short Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal
title_full Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal
title_fullStr Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal
title_full_unstemmed Ant colony algorithm for text classification in multicore-multithread environment / Ahmad Nazmi Fadzal
title_sort ant colony algorithm for text classification in multicore-multithread environment / ahmad nazmi fadzal
granting_institution Universiti Teknologi MARA
granting_department Faculty of Computer and Mathematical Sciences
publishDate 2017
url https://ir.uitm.edu.my/id/eprint/18846/1/18846.pdf
_version_ 1783733710685732864