Electrocardiogram signal based sudden cardiac arrest prediction using machine learning approaches
This thesis focuses on predicting occurrence of imminent sudden cardiac arrest (SCA) using heart rate variability (HRV) and electrocardiogram (ECG) signals. Sudden cardiac death (SCD) is a devastating cardiovascular disease that responsible for millions of deaths per year. SCD occurs when SCA went...
محفوظ في:
المؤلف الرئيسي: | L Murukesan, Loganathan |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
الموضوعات: | |
الوصول للمادة أونلاين: | http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61540/1/Page%201-24.pdf http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61540/2/Full%20text.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Pre-operative BNP level in relation to 30-day cardiovascular morbidity and mortality post cardiac surgery /
بواسطة: Nurtushila Abd Malek
منشور في: (2018) -
Optimisation of computed tomography protocols for cardiac imaging using three-dimensional printing technology
بواسطة: Kamarul Amin Abdullah -
The Development of Electrocardiogram Recorder as a Portable Internet Appliance
بواسطة: Ng, Kwan Ti
منشور في: (2001) -
Fetal QT interval detection from abdominal ECG signals by using iterative independent component analysis /
بواسطة: Fatima Azzahra Manap
منشور في: (2019) -
Classifications of electrocardiogram (ECG) signals using extended Kalman filter (EKF) based neuro fuzzy system /
بواسطة: Yeong, Pong Meau
منشور في: (2005)