Cross sections optimization of plane trusses for various spans and depths

Steel trusses are widely utilized in real-world applications and a continuing motivation for research in optimal structural design exists. In civil engineering, weight optimized trusses are convenient since the easier transportation and less costly structural parts as well as construction work in co...

Full description

Saved in:
Bibliographic Details
Main Author: Sumayah, Abdulsalam Mustafa
Format: Thesis
Language:English
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/2/Full%20text.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimap-61572
record_format uketd_dc
spelling my-unimap-615722019-08-29T01:18:41Z Cross sections optimization of plane trusses for various spans and depths Sumayah, Abdulsalam Mustafa Mohd Zulham Affandi Steel trusses are widely utilized in real-world applications and a continuing motivation for research in optimal structural design exists. In civil engineering, weight optimized trusses are convenient since the easier transportation and less costly structural parts as well as construction work in connection with the build-up is simplified. One more advantage of developing a weight optimized truss is the fact that the minimum share of the load capacity is enrolled by the structure itself. Structural optimization is also very important in the aircraft and car industry whereas a much lighter structure often means a much better energy economy. Accordingly, a rich literature has advanced within the last two decades in analysis and design as well as optimization of truss. Still, only a diminutive number of researchers dealt with the problem of parameterization of the truss cross section. The optimization design of trusses needs to be carried out in accordance to two essential requirements. First the best geometrical layout for members and nodes requires being determined, and second the best adequate cross-sections need to be determined. Generally there is need to exist an optimum shape and a cross-section distribution that is definitely adapted for external loads. Many previous studies, use the areas of cross sections as a continuous design variable, although, the use of a continuous optimization procedure usually more accurate, but it will lead to non-available sizes and any trail to replace those values by the nearest available sizes can make the design unnecessarily heavier. Consequently, solution of the area will be adequate if the design procedure includes the use of cross-sectional areas as discrete design variable from available sizes, as well as if the design takes into account the effective cross section shape at the start of process. This is the topic of this paper, to study the effect of the cross section shape on the optimization of plane trusses problem. This is going to be done by using finite element method and simple linear element with the aid of steel structural analysis and design STAAD software. Four rolled steel sections (angle, tube, channel, and pipe) which are used in industrial roof trusses are applied for this purpose. Furthermore, in producing a structure element, the material properties is not the only factor considered, however, the geometry properties also is vital factor to be considered which is represented by component’s shape factor, that measures the efficiency of the material usage. Outcome results of this research prove that the chosen cross section shape has a significant effect on the optimum truss weight for exact same geometry of the truss type under the similar circumstances of loading and support. Pipe and tube section shapes offer least truss weight. The best truss shape and topology concerns with Mansard and Pratt truss topology at span over depth ratio of six. Universiti Malaysia Perlis (UniMAP) 2015 Thesis en http://dspace.unimap.edu.my:80/xmlui/handle/123456789/61572 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/1/Page%201-24.pdf d0e45a6fdfe3185a844b082d9b5607b3 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/2/Full%20text.pdf 26d00ad0c5fc88e8c81ba7ff0de31352 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/3/license.txt 8a4605be74aa9ea9d79846c1fba20a33 Trusses Trusses -- Design and construction Plane trusses Structural design School of Environmental Engineering
institution Universiti Malaysia Perlis
collection UniMAP Institutional Repository
language English
advisor Mohd Zulham Affandi
topic Trusses
Trusses -- Design and construction
Plane trusses
Structural design
spellingShingle Trusses
Trusses -- Design and construction
Plane trusses
Structural design
Sumayah, Abdulsalam Mustafa
Cross sections optimization of plane trusses for various spans and depths
description Steel trusses are widely utilized in real-world applications and a continuing motivation for research in optimal structural design exists. In civil engineering, weight optimized trusses are convenient since the easier transportation and less costly structural parts as well as construction work in connection with the build-up is simplified. One more advantage of developing a weight optimized truss is the fact that the minimum share of the load capacity is enrolled by the structure itself. Structural optimization is also very important in the aircraft and car industry whereas a much lighter structure often means a much better energy economy. Accordingly, a rich literature has advanced within the last two decades in analysis and design as well as optimization of truss. Still, only a diminutive number of researchers dealt with the problem of parameterization of the truss cross section. The optimization design of trusses needs to be carried out in accordance to two essential requirements. First the best geometrical layout for members and nodes requires being determined, and second the best adequate cross-sections need to be determined. Generally there is need to exist an optimum shape and a cross-section distribution that is definitely adapted for external loads. Many previous studies, use the areas of cross sections as a continuous design variable, although, the use of a continuous optimization procedure usually more accurate, but it will lead to non-available sizes and any trail to replace those values by the nearest available sizes can make the design unnecessarily heavier. Consequently, solution of the area will be adequate if the design procedure includes the use of cross-sectional areas as discrete design variable from available sizes, as well as if the design takes into account the effective cross section shape at the start of process. This is the topic of this paper, to study the effect of the cross section shape on the optimization of plane trusses problem. This is going to be done by using finite element method and simple linear element with the aid of steel structural analysis and design STAAD software. Four rolled steel sections (angle, tube, channel, and pipe) which are used in industrial roof trusses are applied for this purpose. Furthermore, in producing a structure element, the material properties is not the only factor considered, however, the geometry properties also is vital factor to be considered which is represented by component’s shape factor, that measures the efficiency of the material usage. Outcome results of this research prove that the chosen cross section shape has a significant effect on the optimum truss weight for exact same geometry of the truss type under the similar circumstances of loading and support. Pipe and tube section shapes offer least truss weight. The best truss shape and topology concerns with Mansard and Pratt truss topology at span over depth ratio of six.
format Thesis
author Sumayah, Abdulsalam Mustafa
author_facet Sumayah, Abdulsalam Mustafa
author_sort Sumayah, Abdulsalam Mustafa
title Cross sections optimization of plane trusses for various spans and depths
title_short Cross sections optimization of plane trusses for various spans and depths
title_full Cross sections optimization of plane trusses for various spans and depths
title_fullStr Cross sections optimization of plane trusses for various spans and depths
title_full_unstemmed Cross sections optimization of plane trusses for various spans and depths
title_sort cross sections optimization of plane trusses for various spans and depths
granting_institution Universiti Malaysia Perlis (UniMAP)
granting_department School of Environmental Engineering
url http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/61572/2/Full%20text.pdf
_version_ 1747836846076854272