Properties and biodegradability of waste paper foam filled Polyurethane foams composites

The research is focused to study the properties of polyurethane foam reinforced with different types and content of waste paper. The comparison of the effects of three types of waste paper, such as paper sludge (PS) , old newspaper (ONP) and office white paper (OW?) on physical, mechanical. therma...

Full description

Saved in:
Bibliographic Details
Main Author: Dahlia, Zakaria
Format: Thesis
Language:English
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/2/Full%20text.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimap-63460
record_format uketd_dc
spelling my-unimap-634602019-11-29T07:38:26Z Properties and biodegradability of waste paper foam filled Polyurethane foams composites Dahlia, Zakaria Salmah Husseinsyah, Dr. Ir. The research is focused to study the properties of polyurethane foam reinforced with different types and content of waste paper. The comparison of the effects of three types of waste paper, such as paper sludge (PS) , old newspaper (ONP) and office white paper (OW?) on physical, mechanical. thermal. biodegradable properties and morphology of PU foam was studied. The result show ONP foam significantly highest value of compressive strength. compressive modulus and hardness compared than PS and OWP foam composites. The increasing filler loading improved the mechanical properties but reduced the density of foam. Scanning electron microscopy (SEM) study indicated that the addition of waste paper in polyurethane foam reduced the open cell structure of foam. The biodegradation study of waste paper foam composites increased with increasing of waste paper loading. However. the ONP foam composites showed higher degradation in soil compared to the OWP foam and followed by PS foam composites. The results of thermogravimetric analysis (I'GA) showed PS foam composites has highest thermal stability compared with OWP and ONP foam composites. The PS foam composites exhibit the highest of crystallization. The presence of the triethylene diamine (I'EDA) as catalyst has improved the compressive strength. compressive modulus. hardness and density of waste paper foam composites. The thermal stability of waste paper foam composites with TEDA is higher than waste paper foam composites without TEDA . The micrographs of waste paper foam composites with TEDA show the addition offiller and catalyst can affict the crosslinking of the foam composites to produce the smaller cell structure. The waste paper foam composites with methylene chloride (MC) have higher of compressive strength, compressive modulus and hardness but lower the density and thermal stability compare to waste paper foam composites without Me. The morphology of waste paper foam composites with different filler loading with MC show smaller open cell compared to without catalyst. Partial replacement of toluene diisocyanate (I'D1) in diphenyl methane .J,.J 'diisocyanate (MD1) of ONP foam indicates higher compressive strength. compressive modulus, hardness and density compared to MDl/ONP foam composites. The micrograph of TD1 MDHONP foam composites show tHat the foam close cell structure compared to MDl/ONP foam composites. The TD1/MDI/ONP foam composites have better thermal stabiLity than MDl/ONP foam composites. Universiti Malaysia Perlis (UniMAP) 2010 Thesis en http://dspace.unimap.edu.my:80/xmlui/handle/123456789/63460 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/1/Page%201-24.pdf 937433d7acbe2fdc6896d6527319b947 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/2/Full%20text.pdf 9dc98a089011ba57571d09357b268b1a http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/3/license.txt 8a4605be74aa9ea9d79846c1fba20a33 Polymers Biodegradable products Polyurethanes Waste paper Waste products School of Materials Engineering
institution Universiti Malaysia Perlis
collection UniMAP Institutional Repository
language English
advisor Salmah Husseinsyah, Dr. Ir.
topic Polymers
Biodegradable products
Polyurethanes
Waste paper
Waste products
spellingShingle Polymers
Biodegradable products
Polyurethanes
Waste paper
Waste products
Dahlia, Zakaria
Properties and biodegradability of waste paper foam filled Polyurethane foams composites
description The research is focused to study the properties of polyurethane foam reinforced with different types and content of waste paper. The comparison of the effects of three types of waste paper, such as paper sludge (PS) , old newspaper (ONP) and office white paper (OW?) on physical, mechanical. thermal. biodegradable properties and morphology of PU foam was studied. The result show ONP foam significantly highest value of compressive strength. compressive modulus and hardness compared than PS and OWP foam composites. The increasing filler loading improved the mechanical properties but reduced the density of foam. Scanning electron microscopy (SEM) study indicated that the addition of waste paper in polyurethane foam reduced the open cell structure of foam. The biodegradation study of waste paper foam composites increased with increasing of waste paper loading. However. the ONP foam composites showed higher degradation in soil compared to the OWP foam and followed by PS foam composites. The results of thermogravimetric analysis (I'GA) showed PS foam composites has highest thermal stability compared with OWP and ONP foam composites. The PS foam composites exhibit the highest of crystallization. The presence of the triethylene diamine (I'EDA) as catalyst has improved the compressive strength. compressive modulus. hardness and density of waste paper foam composites. The thermal stability of waste paper foam composites with TEDA is higher than waste paper foam composites without TEDA . The micrographs of waste paper foam composites with TEDA show the addition offiller and catalyst can affict the crosslinking of the foam composites to produce the smaller cell structure. The waste paper foam composites with methylene chloride (MC) have higher of compressive strength, compressive modulus and hardness but lower the density and thermal stability compare to waste paper foam composites without Me. The morphology of waste paper foam composites with different filler loading with MC show smaller open cell compared to without catalyst. Partial replacement of toluene diisocyanate (I'D1) in diphenyl methane .J,.J 'diisocyanate (MD1) of ONP foam indicates higher compressive strength. compressive modulus, hardness and density compared to MDl/ONP foam composites. The micrograph of TD1 MDHONP foam composites show tHat the foam close cell structure compared to MDl/ONP foam composites. The TD1/MDI/ONP foam composites have better thermal stabiLity than MDl/ONP foam composites.
format Thesis
author Dahlia, Zakaria
author_facet Dahlia, Zakaria
author_sort Dahlia, Zakaria
title Properties and biodegradability of waste paper foam filled Polyurethane foams composites
title_short Properties and biodegradability of waste paper foam filled Polyurethane foams composites
title_full Properties and biodegradability of waste paper foam filled Polyurethane foams composites
title_fullStr Properties and biodegradability of waste paper foam filled Polyurethane foams composites
title_full_unstemmed Properties and biodegradability of waste paper foam filled Polyurethane foams composites
title_sort properties and biodegradability of waste paper foam filled polyurethane foams composites
granting_institution Universiti Malaysia Perlis (UniMAP)
granting_department School of Materials Engineering
url http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/63460/2/Full%20text.pdf
_version_ 1747836857451806720