Microwave sintered of 10Hydroxyapatite-Yttria stabilized Zirconia-Alumina Bioceramics Composites for biomedical applications

The minimal biocompatibility features and consequence implant loosening are the crucial issues in orthopedic implant complication. The prime requirements of medical implant are acceptable mechanical properties which impart excellent interaction with the surrounding tissue without elicit an advers...

全面介绍

Saved in:
书目详细资料
格式: Thesis
语言:English
主题:
在线阅读:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72312/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72312/2/Full%20text.pdf
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:The minimal biocompatibility features and consequence implant loosening are the crucial issues in orthopedic implant complication. The prime requirements of medical implant are acceptable mechanical properties which impart excellent interaction with the surrounding tissue without elicit an adverse response. The remarkable biocompatibility properties of hydroxyapatite (HAP) acknowledged as the most practical implant materials. The bioactive hydroxyapatite encountered with poor mechanical properties.The presence of YSZ and Al2O3 areas an inert and physically strong bioceramics with high level of biocompatibility. The research associated with this bioceramics had been proven over the past years through the conventional sintering, but processing this bioceramics composites using microwave hybrid heating is rather scarce in literature. This research is specifically concerned with the effect of microwave sintered 10HAP-YSZ-Al2O3 composites towardsdifferent sintering temperatures and the various compositions of YSZ and Al2O3to 10 wt. % of HAP. Comparative sintering was performed at temperatures of 900ºC, 1000 ºC and 1100 ºC. Composites containing 60 wt. % microwave sintered at temperature of 1000 ºC exhibited the greatest properties, due to incorporation of YSZ and Al2O3which overcome the inherent brittleness of HAP. The 10HAP-60YSZ-Al2O3 composites indicated an increase in density to 2.88g/cm3, Vickers hardness and compressive strength results as 5.68GPa and 36.31MPa respectively.