Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling

Acute myocardial infarction (AMI) is a leading cause of death worldwide despite the existence of therapy’s advances. Therefore, an early diagnosis method by using cardiac biomarkers is essential to enable correct countermeasures. Cardiac Troponin I (cTnI) is one of the cardiac biomarkers for early d...

Full description

Saved in:
Bibliographic Details
Format: Thesis
Language:English
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/2/Full%20text.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/4/Mohamad%20Faris.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimap-77989
record_format uketd_dc
spelling my-unimap-779892023-03-06T03:11:15Z Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling Mohd Khairuddin, Md. Arshad, Ir. Dr. Acute myocardial infarction (AMI) is a leading cause of death worldwide despite the existence of therapy’s advances. Therefore, an early diagnosis method by using cardiac biomarkers is essential to enable correct countermeasures. Cardiac Troponin I (cTnI) is one of the cardiac biomarkers for early diagnosis of AMI and considered as ‘gold standard’ for cardiac muscle injury determination. The detection of cTnI through an electrical-based biosensor allows label-free detection by converting biomolecular binding event into a significant electrical signal via a semiconductor transducer. It utilizes conductivity to specify the existence of biomolecules. One of the electrical-based biosensors known as field-effect transistor (FET)-based biosensor has drawn much attention for owning the concept of charge transduction; thus, allows early, high sensitivity, high selectivity, and rapid diagnosis of the specific cardiac biomarker at low concentrations. In this work, the zinc oxide (ZnO)-FET biosensor coupled with substrategate has been designed and fabricated for the detection of cTnI biomarker. ZnO thin film, as n-type biocompatible semiconductor material, and also as transducer was deposited via sol-gel and spin coating techniques between p-type source and drain terminal on SOI substrate, forming a p-n-p junction, a device capable of bio-sensing application. The surface morphology of the thin film was characterized by using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The thin film, which demonstrated hexagonal wurtzite phase as shown by X-ray diffraction (XRD) analysis appropriate for biomolecules interaction. The surface of the ZnO thin film was immobilized with cTnI monoclonal antibody (MAb-cTnI) as biological receptor via covalent binding technique for capturing cTnI biomarker. The process was validated by Fourier transform-infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The device structure was simulated in Silvaco Atlas 2D-simulator, to elucidate its electrical characteristic, by means of hole and electron concentration in the channel and buried oxide/substrate interface, respectively. The device demonstrated a new strategy via electrical characterization with the introduction of substrate-gate coupling that enhanced the formation of hole conduction layer at the channel between drain and source region. Finally, the biosensor shown significant increment in relative changes of drain current level in a linear range of 6.2 to 16.5 % with the increase of positively charge cTnI biomarker concentrations from 1 ng/ml to 10 μg/ml. The device sensitivity of the detection is at 2.51 %·(g/ml)-1 with limit of detection (LOD) down to 3.24 pg/ml. Universiti Malaysia Perlis (UniMAP) Thesis en http://dspace.unimap.edu.my:80/xmlui/handle/123456789/77989 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/3/license.txt 8a4605be74aa9ea9d79846c1fba20a33 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/1/Page%201-24.pdf afbced9bab1d0404eb5f80353e8c94b7 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/2/Full%20text.pdf dc9129d26c5cf8b1813fff1e4035d366 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/4/Mohamad%20Faris.pdf fe49fa114ffb8a01f0dcb4e6660a471e Universiti Malaysia Perlis (UniMAP) Biosensors Myocardial infarction Biochemical markers Field-effect transistors Nanostructured materials Institute of Nano Electronic Engineering
institution Universiti Malaysia Perlis
collection UniMAP Institutional Repository
language English
advisor Mohd Khairuddin, Md. Arshad, Ir. Dr.
topic Biosensors
Myocardial infarction
Biochemical markers
Field-effect transistors
Nanostructured materials
spellingShingle Biosensors
Myocardial infarction
Biochemical markers
Field-effect transistors
Nanostructured materials
Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling
description Acute myocardial infarction (AMI) is a leading cause of death worldwide despite the existence of therapy’s advances. Therefore, an early diagnosis method by using cardiac biomarkers is essential to enable correct countermeasures. Cardiac Troponin I (cTnI) is one of the cardiac biomarkers for early diagnosis of AMI and considered as ‘gold standard’ for cardiac muscle injury determination. The detection of cTnI through an electrical-based biosensor allows label-free detection by converting biomolecular binding event into a significant electrical signal via a semiconductor transducer. It utilizes conductivity to specify the existence of biomolecules. One of the electrical-based biosensors known as field-effect transistor (FET)-based biosensor has drawn much attention for owning the concept of charge transduction; thus, allows early, high sensitivity, high selectivity, and rapid diagnosis of the specific cardiac biomarker at low concentrations. In this work, the zinc oxide (ZnO)-FET biosensor coupled with substrategate has been designed and fabricated for the detection of cTnI biomarker. ZnO thin film, as n-type biocompatible semiconductor material, and also as transducer was deposited via sol-gel and spin coating techniques between p-type source and drain terminal on SOI substrate, forming a p-n-p junction, a device capable of bio-sensing application. The surface morphology of the thin film was characterized by using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The thin film, which demonstrated hexagonal wurtzite phase as shown by X-ray diffraction (XRD) analysis appropriate for biomolecules interaction. The surface of the ZnO thin film was immobilized with cTnI monoclonal antibody (MAb-cTnI) as biological receptor via covalent binding technique for capturing cTnI biomarker. The process was validated by Fourier transform-infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The device structure was simulated in Silvaco Atlas 2D-simulator, to elucidate its electrical characteristic, by means of hole and electron concentration in the channel and buried oxide/substrate interface, respectively. The device demonstrated a new strategy via electrical characterization with the introduction of substrate-gate coupling that enhanced the formation of hole conduction layer at the channel between drain and source region. Finally, the biosensor shown significant increment in relative changes of drain current level in a linear range of 6.2 to 16.5 % with the increase of positively charge cTnI biomarker concentrations from 1 ng/ml to 10 μg/ml. The device sensitivity of the detection is at 2.51 %·(g/ml)-1 with limit of detection (LOD) down to 3.24 pg/ml.
format Thesis
title Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling
title_short Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling
title_full Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling
title_fullStr Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling
title_full_unstemmed Electrical label-free sensing of cardiac troponin biomarker: FET-based integration with substrate-gate coupling
title_sort electrical label-free sensing of cardiac troponin biomarker: fet-based integration with substrate-gate coupling
granting_institution Universiti Malaysia Perlis (UniMAP)
granting_department Institute of Nano Electronic Engineering
url http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/2/Full%20text.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77989/4/Mohamad%20Faris.pdf
_version_ 1776104257405059072