Development of recombinant plant vaccine for cacao swollen shoot virus (CSSV) infection

Cacao Swollen Shoot Disease (CSSD) is a persistent, incurable viral infection that kills infected cacao plants within 2-years after symptom development. Initially limited to West Africa, the disease has spread to other cacao growing areas, and poses a serious threat to the US$107 billion global choc...

Full description

Saved in:
Bibliographic Details
Main Author: Joel Michael, Ponniah
Format: Thesis
Language:English
English
Published: 2015
Subjects:
Online Access:http://ir.unimas.my/id/eprint/10926/1/Development%20of%20Recombinant%20Plant%20Vaccine%20for%20Cocoa%20Swollen%20Shoot%20Virus%20%28CSSV%29%20Infection%20%2824%20pages%29.pdf
http://ir.unimas.my/id/eprint/10926/8/Joel%20Michael%20Pnnniah%20ft.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cacao Swollen Shoot Disease (CSSD) is a persistent, incurable viral infection that kills infected cacao plants within 2-years after symptom development. Initially limited to West Africa, the disease has spread to other cacao growing areas, and poses a serious threat to the US$107 billion global chocolate industry. A prospective vaccine against CSSD was developed in this study using recombinant gene technology. Agou1 cacao swollen shoot virus genome was isolated from total plant DNA using an established PCRbased isolation methodology, and the resultant full-length linear virus DNA amplified in OneShot® Top10 chemically competent Escherichia coli cells using pCR-XL TOPO® cloning plasmids. The virus DNA was later retrieved, digested using EcoRI restriction enzyme, and the targeted ORF3 gene fragment isolated through gel electrophoresis and incorporated into pBAD-TOPO® expression plasmids. This were then transformed into domesticated Paenibacillus polymyxa cells through electroporation, which acted as vaccine carrier. The resultant Biotic Response Elicitor Vaccine (BREV) produced a fragment of the virus particle, which was hypothesized to induce augmented systemic expression of the natural plant defense mechanism.