Evaluation of Visual Network Algorithms on Historical Documents
Visual network is a special type of graph representing real life systems where the vertices are accompanied with attributes and the edges represent relationships between them. Network visualisation facilitate comprehension of texts, especially for historical documents, where important events, facts...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://ir.unimas.my/id/eprint/29965/1/Evaluation...pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-unimas-ir.29965 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Malaysia Sarawak |
collection |
UNIMAS Institutional Repository |
language |
English |
topic |
QA75 Electronic computers Computer science |
spellingShingle |
QA75 Electronic computers Computer science Khairunnisa, Binti Ibrahim Evaluation of Visual Network Algorithms on Historical Documents |
description |
Visual network is a special type of graph representing real life systems where the vertices are accompanied with attributes and the edges represent relationships between them. Network visualisation facilitate comprehension of texts, especially for historical documents, where important events, facts and relationships are recorded. This study proposed a generic framework to perform evaluation of visual network algorithms to find the best network representation of a document. The framework suggests to evaluate both graph layout and clustering algorithm in order to produce a good network. The framework has been used to evaluate three graph layout and three graph clustering algorithms on the historical SAGA dataset. The evaluation found that FA2 algorithm when combined with MC algorithm produce the best network representation for SAGA. The evaluation also demonstrates that the scores given by evaluation metrics can disagree with one another as they each are invented based on different opinions on how to indicate a good cluster. The proposed framework is also applied on Biotext and dBPedia dataset and the findings implied that the performance of an algorithm, be it a layout or a clustering algorithm, actually depends on the structure of the document itself. Therefore, for a new document, evaluation of algorithms is ineluctable. The study also proposed a simple but reliable cluster evaluation metric called NPL-C metric. The metric is able to rate both the internal and external structure of clusters in a given network by using the concept of average path length and conductance. |
format |
Thesis |
qualification_level |
Master's degree |
author |
Khairunnisa, Binti Ibrahim |
author_facet |
Khairunnisa, Binti Ibrahim |
author_sort |
Khairunnisa, Binti Ibrahim |
title |
Evaluation of Visual Network Algorithms on Historical Documents |
title_short |
Evaluation of Visual Network Algorithms on Historical Documents |
title_full |
Evaluation of Visual Network Algorithms on Historical Documents |
title_fullStr |
Evaluation of Visual Network Algorithms on Historical Documents |
title_full_unstemmed |
Evaluation of Visual Network Algorithms on Historical Documents |
title_sort |
evaluation of visual network algorithms on historical documents |
granting_institution |
Universiti Malaysia Sarawak (UNIMAS) |
granting_department |
Faculty of Computer Science and Information Technology |
publishDate |
2020 |
url |
http://ir.unimas.my/id/eprint/29965/1/Evaluation...pdf |
_version_ |
1783728374015852544 |
spelling |
my-unimas-ir.299652023-06-06T08:31:57Z Evaluation of Visual Network Algorithms on Historical Documents 2020 Khairunnisa, Binti Ibrahim QA75 Electronic computers. Computer science Visual network is a special type of graph representing real life systems where the vertices are accompanied with attributes and the edges represent relationships between them. Network visualisation facilitate comprehension of texts, especially for historical documents, where important events, facts and relationships are recorded. This study proposed a generic framework to perform evaluation of visual network algorithms to find the best network representation of a document. The framework suggests to evaluate both graph layout and clustering algorithm in order to produce a good network. The framework has been used to evaluate three graph layout and three graph clustering algorithms on the historical SAGA dataset. The evaluation found that FA2 algorithm when combined with MC algorithm produce the best network representation for SAGA. The evaluation also demonstrates that the scores given by evaluation metrics can disagree with one another as they each are invented based on different opinions on how to indicate a good cluster. The proposed framework is also applied on Biotext and dBPedia dataset and the findings implied that the performance of an algorithm, be it a layout or a clustering algorithm, actually depends on the structure of the document itself. Therefore, for a new document, evaluation of algorithms is ineluctable. The study also proposed a simple but reliable cluster evaluation metric called NPL-C metric. The metric is able to rate both the internal and external structure of clusters in a given network by using the concept of average path length and conductance. Universiti Malaysia Sarawak, (UNIMAS) 2020 Thesis http://ir.unimas.my/id/eprint/29965/ http://ir.unimas.my/id/eprint/29965/1/Evaluation...pdf text en validuser masters Universiti Malaysia Sarawak (UNIMAS) Faculty of Computer Science and Information Technology Aggarwal, C. C., & Wang, H. (2010). A Survey of Clustering Algorithms for Graph Data. In Managing and Mining Graph Data (Aggarwal, C. C., & Wang, H., eds), pp. 275-301. New York: Springer. Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link Communities Reveal Multiscale Complexity in Networks. Nature, 466(7307), 761-764. Almeida, H., Guedes, D., Meira, W., & Zaki, M. J. (2011). Is There a Best Quality Metric for Graph Clusters? In Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 44-59. Almeida, H., Neto, D. G., Meira, W., & Zaki, M. J. (2012). Towards a Better Quality Metric for Graph Cluster Evaluation. Journal of Information and Data Management, 3(3), 378-393. Barnes, J., & Piet, H. (1986). A Hierarchical O(N log N) Force-Calculation Algorithm. Nature, 324(6096), 446-449. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Explorating and Manipulating Networks. In Proceedings of International AAAI Conference on Web and Social Media, San Jose, pp. 361-362. Biemann, C. (2006). Chinese Whispers - an Efficient Graph Clustering Algorithm and its Application to Natural Language Processing Problems. In Proceedings of TextGraphs: The First Workshop on Graph Based Methods for Natural Language Processing, pp. 73-80. Biemann, C. (2007). Unsupervised and Knowledge-free Natural Language Processing in the Structure Discovery Paradigm, Germany: Leipzig University. Biemann, C. (2009). Unsupervised Part-of-speech Tagging in the Large. Research on Language and Computation, 7(2-4), 101-135. Biemann, C., & Teresniak, S. (2005). Disentangling from Babylonian Confusion - Unsupervised Language Identification. In Proceedings of Computational Linguistics and Intelligent Text Processing, pp. 773-784. Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology, 25(2), 163-177. Brandes, U., & Erlebach, T. (2005). Network Analysis: Methodological Foundations, Heidelberg: Springer. Brandes, U., Gaertler, M., & Wagner, D. (2003). Experiments on Graph Clustering Algorithms. In Proceedings of European Symposium on Algorithms, pp. 568-579. Brohée, S., & Helden, J. (2006). Evaluation of Clustering Algorithms for Protein-protein Interaction Networks. BMC Bioinformatics, 7(1), 488-506. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., & Mutzel, P. (2013). Crossings and Planarisation. In Handbook on Graph Drawing and Visualisation (Tamassia, R., Ed.), pp. 43-85. Boca Raton: CRC Press. Carpano, M. J. (1980). Automatic Display of Hierarchised Graphs for Computer Aided Decision Analysis. IEEE Transactions on Systems, Man, and Cybernetics, 10(11), 705-715. Chen, C. (2006). Information Visualisation: Beyond the Horizon, London: Springer-Verlag London. Chimani, M., Hedtke, I., & Wiedera, T. (2019). Exact Algorithms for the Maximum Planar Subgraph Problems: New Models and Experiment. Journal of Experimental Algorithmics, 24(1), 2-1. Clancy, K., Haythorpe, M., & Newcombe, A. (2019). An Effective Crossing Minimisation Heuristic Based on Star Insertion. Journal of Graph Algorithms and Applications, 23(2), 135-166. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms, 3rd ed., Cambridge, Massachusetts: The MIT Press. Davidson, G. S., Wylie, B. N., & Boyack, K. W. (2001). Cluster Stability and the Use of Noise in Interpretation of Clustering. In Proceedings of IEEE Symposium on Information Visualisation, pp. 23-30. dBPedia. (n.d.). [online] Available at: https://wiki.dbpedia.org/ [Assessed on 29 January 2020] Degórski, Ł. (2013). Fine-tuning Chinese Whispers Algorithm for a Slavonic Language POS Tagging Task and its Evaluation. In Proceedings of the 6th Language and Technology Conference (LTC 2013), pp. 439-443. Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1994). Algorithms for Drawing Graphs: An Annotated Bibliography. Computational Geometry, 4(5), 235-282. Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1998). Graph Drawing: Algorithms for the Visualisation of Graphs. Prentice Hall PTR. Di Giacomo, E., Liotta, G., & Tamassia, R. (2018). Graph drawing. In Handbook of Discrete and Computational Geometry (Goodman, J. E., O'Rourke, J., & Tóth, C. D., Eds.), pp. 1451-1478. Boca Raton: CRC Press. Djidjev, H. N., & Onus, M. (2013). Scalable and Accurate Algorithm for Graph Clustering. IEEE Transactions on Parallel and Distributed Systems, 24(5), 1022-1029. Dubey, A., & Sharma, S. (2013). Comparison of Graph Clustering Algorithms. International Journal of Computer Trends and Technology, 4(9), 3230-3235. Duncan, C. A., & Goodrich, M. T. (2013). Planar Orthogonal and Polyline Drawing Algorithms. In Handbook of Graph Drawing and Visualisation (Tamassia, R., Ed.), pp. 223-246. Boca Raton: CRC Press. Dunne, C., Ross, S. I., Shneiderman, B., & Martino, M. (2015). Readability Metric Feedback for Aiding Vertex-link Visualisation Designers. IBM Journal of Research and Development, 59(2/3), 1-16. Eades, P. (1984). A Heuristic for Graph Drawing. Congressus Numerantium, 42, 149–160. Eades, P. (2015). Graph Visualisation: Topology-Shape-Metric. [online] Available at: http://edbt2015school.win.tue.nl/material/EadesLectures/planar_v1.pdf [Assessed on 29 January 2020] Eades, P., & Klein, K. (2015). Graph Visualisation. In Proceedings of Graph Data Management, pp. 33-70. Emmons, S., Kobourov, S., Gallant, M., & Börner, K. (2016). Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale. PLoS ONE, 11(7), 1-18. Enright, A. J., Dongen, S. V., & Ouzounis, C. A. (2002). An Efficient Algorithm for Large-Scale Detection of Protein Families. Nucleic Acids Research, 30(7), 1575-1584. Enright, A. J., Kunin, V., & Ouzounis, C. A. (2003). Protein Families and TRIBES in Genome Sequence Space. Nucleic Acids Research, 31(15), 4632-4638. Foggia, P., Sansone, C., & Vento, M. (2001). A Performance Comparison of Five Algorithms for Graph Isomorphism. In Proceedings of 3rd IAPR TC-15 Workshop on Graph-based Representations in Pattern Recognition, pp. 188-199. Frick, A., Ludwig, A., & Mehldau, H. (1994). A Fast Adaptive Layout Algorithm for Undirected Graphs. In Proceedings of International Symposium on Graph Drawing, pp. 388-403. Fruchterman, T. M., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Journal Software-Practice & Experience, 21(11), 1129-1164. Garg, A., & Tamassia, R. (2001). On the Computational Complexity of Upward and Rectilinear Planarity Testing. Society for Industrial and Applied Mathematics Journal on Computing, 31(2), 601-625. Gibson, H., Faith, J., & Vickers, P. (2014). A Survey of Two-Dimensional Graph Layout Techniques for Information Visualisation. Information Visualisation, 12(3-4), 324-357. Girvan, M., & Newman, M. E. (2002). Community Structure in Social and Biological Networks. In Proceedings of National Academy of Science of the United States of America, pp. 7821-7826. Grobelnik, M., & Mladenic, D. (2004). Visualisation of News Articles. Informatica, 28(4), 375-380. Gutwenger, C., & Mutzel, P. (2003). An Experimental Study of Crossing Minimisation Heuristics. In Proceedings of 11th International Symposium on Graph Drawing, pp. 13-24. Hachul, S., & Jünger, M. (2005). Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm. Graph Drawing 2004, 3383, 285-295. Hachul, S., & Jünger, M. (2006). An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs. In Proceedings of International Symposium on Graph Drawing, pp. 235-250. Hall, K. M. (1970). An r-Dimensional Quadratic Placement Algorithm. Management Science, 17(3), 219-229. Hamasuna, Y., Ozaki, R., & Endo, Y. (2017). A Study on Cluster Validity Measures for Clustering Network Data. In Proceedings of Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS2017), pp. 410-415. Harrison, C. (2007). Bible Cross References. [online] Available at: http://www.chrisharrison.net/index.php/Visualizations/BibleViz [Assessed on 29 January 2020] Hartigan, J. A., & Wong, M. A. (1979). A k-Means Clustering Algorithm. Journal of the Royal Statistical Society (Applied Statistics), 28(1), 100-108. He, H., Sýkora, O., & Vrt'o, I. (2005). Heuristic Crossing Minimisation Algorithms for 2-page Drawings. Electronic Notes in Discrete Mathematics, 22, 527-534. Healy, P., & Nikolov, N. S. (2013). Hierarchical Graph Drawing. In Handbook of Graph Drawing and Visualisation (Tamassia, R., & Tamassia, R., Ed.), pp. 409-453. Boca Raton: CRC Press. Hearst, M. A. (2009). Search User Interfaces, New York: Cambridge University Press. Hinrichs, U., Alex, B., Clifford, J., Watson, A., Quigley, A., Klein, E., & Coates, C. M. (2015). Trading Consequences: A Case Study of Combining Text Mining and Visualisation to Facilitate Document Exploration. Digital Scholarship in the Humanities, 30(1), i50-i75. Hu, Y. (2006). Efficient, High-Quality Force-Directed Graph Drawing. The Mathematica Journal, 10(1), 37-71. Hua, J., Huang, M. L., & Wang, G. (2018). Graph Layout Performance Comparisons of Force-Directed Algorithms. International Journal of Performability Engineering, 14(1), 67-76. Huang, W. (2013). An Aggregation-Based Overall Quality Measurement for Visualisation. [online] Available at: https://arxiv.org/abs/1306.2404 [Assessed on 29 January 2020] Itoh, M., & Akaishi, M. (2012). Visualisation for Changes in Relationships between Historical Figures in Chronicles. In Proceedings of the International Conference on Information Visualisation, pp. 283-290. Jacomy, M. (2014). benchmarkForceAtlas2. [online] Available at: https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.csv [Assessed on 29 January 2020] Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualisation Designed for the Gephi Software. PLoS ONE, 9(6), e98679. Jianbo, S., & Jitendra, M. (2000). Normalised Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888-905. Kannan, R., Vempala, S., & Vetta, A. (2004). On Clusterings: Good, Bad and Spectral. Journal of the ACM, 51(3), 497-515. Kar, G. M., & Gilbert, R. S. (1988). Heuristic Layout Algorithms for Network Management Presentation Services. IEEE Network, 2(6), 29-36. Kasik, D. J., Ebert, D., Lebanon, G., Park, H., & Pottenger, W. M. (2009). Data Transformations and Representations for Computation and Visualisation. Information Visualisation, 8(4), 275-285. Khokhar, D. (2015). Gephi Cookbook, Birmingham: Packt Publishing. Knuth, D. E. (1963). Computer-Drawn Flowcharts. Magazine Communications of the ACM, 6(9), 555-563. Kobourov, S. G. (2012). Spring Embedders and Force Directed Graph Drawing Algorithms. [online] Available at: https://arxiv.org/abs/1201.3011 [Assessed on 29 January 2020] Kobourov, S. G. (2013). Force-Directed Drawing Algorithms. In Handbook of Graph Drawing and Visualisation (Tamassia, R., Ed.), pp. 383-408. CRC Press. Koren, Y. (2003). On Spectral Graph Drawing. In Proceedings of the 9th Annual International Conference on Computing and Combinatorics, pp. 496-508. Krebs, V. (1996). Visualising Human Networks. Release, 1, 1-25. Kruja, E., Marks, J., Blair, A., & Waters, R. (2001). A Short Note on the History of Graph Drawing. In Proceedings of Graph Drawing, pp. 222-286. Li, L., Stoeckert Jr., C. J., & Roos, D. S. (2003). OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13(9), 2178-2189. Liang, M., Gao, C., Li, X., & Zhang, Z. (2017). An Enhanced Markov Clustering Algorithm Based on Physarum. In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 486-498. Lizinski, V., Sell, G., Jansen, A. (2015). An Evaluation of Graph Clustering Methods for Unsupervised Term Discovery. In Proceedings of International Speech Communication Association (INTERSPEECH), pp. 3209-3213. Martin, S., Brown, W. M., Klavans, R., & Boyack, K. (2011). OpenOrd: Open-Source Toolbox for Large Graph Layout. In Proceedings of SPIE 7868, Visualisation and Data Analysis, pp. 23-27. Matijević, T., Vujičić, T., Ljucović, J., Radunović, P., & Balota, A. (2016). Performance Analysis of Girvan-Newman Algorithm on Different Types of Random Graphs. In Proceedings of Central European Conference on Information and Intelligent Systems, pp. 11-16. Mi, P., Sun, M., Masiane, M., Cao, Y., & North, C. (2016). Interactive Graph Layout of a Million Vertices. Informatics, 3(4), 23. Miao, Q., Zhang, S., Zhang, B., Meng, Y., & Yu, H. (2012). Extracting and Visualising Semantic Relationships from Chinese Biomedical Text. In Proceedings of the 26th Pacific Asia Conference on Language, Information and Computation, pp. 99-107. Michailidis, G. (2008). Data Visualisation Through their Graph Representations. In Handbook of Data Visualisation (Chen, C. -H., Härdle, W, & Unwin, A., Eds.), pp. 103-120. Berlin Heidelberg: Springer. Mihail, M., Gkantsidis, C., Saberi, A., & Zegura, E. (2002). On the Semantics of Internet Topologies. USA: Georgia Institute of Technology. Mihalcea, R., & Radev, D. (2011). Graph-Based Natural Language Processing and Information Retrieval. Cambridge University Press. Mohammed, Z. J., & Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. Mueller, C., Gregor, D., & Lumsdaine, A. (2006). Distributed Force-Directed Graph Layout and Visualisation. In Proceedings of the 6th Eurographics Conference on Parallel Graphics and Visualisation, pp. 83-90. Nascimento, M. C., & Carvalho, A. C. (2011). A Graph Clustering Algorithm Based on a Clustering Coefficient for Weighted Graphs. Journal Braz Comput Soc, 17(1), 19-29. Nataliani, Y., & Wellem, T. (2016). HTTP Traffic Graph Clustering using Markov Clustering Algorithm. International Journal of Computer Applications, 90(2), 37-41. Newman, M. E., & Girvan, M. (2003). Mixing Patterns and Community Structure in Networks. In Statistical Mechanics of Complex Networks (Pastor-Satorras, R., Rubi, M., & Diaz-Guilera, A., Eds.), pp. 66-87. Berlin: Springer. Newman, M. E., & Girvan, M. (2004). Finding and Evaluating Community Structure in Networks. Physical Review E, 69(2), 026113. Nikolov, N. S. (2016). Sugiyama algorithm. In Encyclopedia of Algorithms (Kao, M. -Y., Ed.), pp. 2162-2166. Berlin, Heidelberg: Springer. Osaki, T., Itsubo, S., Kimura, F., Tzuka, T., & Maeda, A. (2011). Visualisation of Relationships Among Historical Persons Using Locational Information. In Proceedings of International Symposium on Web and Wireless Geographical Information Systems, 230–239. Patrignani, M., & Vargiu, F. (1997). 3DCube: A Tool for Three Dimensional Graph Drawing. In Proceedings of the Symposium on Graph Drawing (GD’97), pp. 284-290. Penna, G. D., & Orefice, S. (2016). Supporting Information Extraction from Visual Documents. Journal of Computer and Communications, 4, 36-48. Pereira-Leal, J. B., Enright, A. J., & Ouzounis, C. A. (2004). Detection of Functional Modules from Protein Interaction Networks. PROTEINS: Structure, Function and Bioinformatics, 54(1), 49-57. Poranen. T. (2006). Two New Approximation Algorithms for the Maximum Planar Subgraph Problem. Acta Cybernetica, 18(3), 503-527. Pratama, M. F. E., Kemas, R. S. W., & Anisa, H. (2017). Digital News Graph Clustering using Chinese Whispers Algorithm. In Proceedings of Journal of Physics: Conference Series, pp. 1-7. Purchase, H. (1997). Which Aesthetic Has the Greatest Effect on Human Understanding? In Proceedings of the 5th International Symposium on Graph Drawing, pp. 248–261. Raper, S. (2012). Graphing the History of Philosophy. [online] Available at: http://www.coppelia.io/2012/06/graphing-the-history-of-philosophy/. [Assessed on 29 January 2020] Rosario, B., & Hearst, M. A. (2004). Classifying Semantic Relations in Bioscience Texts. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, pp. 431-438. Santanu, S. R. (2013). Graph Theory with Algorithms and its Applications: In Applied Science and Technology, Springer Science & Business Media. Schaeffer, S. E. (2007). Graph Clustering. Computer Science Review, 1(1), 27-64. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. Shawn, G., Milligan, I., & Weingart, S. (2013). Networks in Historical Research. [online] Available at: http://www.themacroscope.org/?page_id=308 [Assessed on 29 January 2020] Shih, Y.-K., Kim, S., Shi, T., & Parthasarathy, S. (2013). Directional Component Detection via Markov Clustering in Directed Networks. In Proceedings of the 11th Workshop on Mining and Learning with Graphs, pp. 1-6. Shon, H. S., Kim, S., Rhee, C. S., & Ryu, K. H. (2007). Clustering Approach using MCL Algorithm for Analysing Microarray Data. International Journal of Bioelectromagnetism, 9(2), 65-66. Smith, M. A., Shneiderman, B., Milic-Frayling, N., Rodrigues, E. M., Barash, V., Dunne, C., Capone, T., Perer, A. & Gleave, E. (2009). Analysing (Social Media) Networks with NodeXL. In Proceedings of the Fourth International Conference on Communities and Technologies, pp. 255-264. Song, S., & Zhao, J. (2014). Survey of Graph Clustering Algorithms Using Amazon Reviews. USA: Stanford University. Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for Visual Understanding of Hierarchical System Structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2), 109-125. Tamassia, R. (1987). On Embedding a Graph in the Grid with the Minimum Number of Bends. Society for Industrial and Applied Mathematics Journal on Computing, 16(3), 421–444. Tamassia, R. (1998). Constraints in Graph Drawing Algorithms. Constraints, 3(1), 87-120. Tan , D. Y., Ranaivo-Malançon, B., & Kulathuramaiyer, N. (2015). Wiki SaGa: An Interactive Timeline to Visualise Historical Documents. In Information Science and Applications (Kim, K. J. Ed.), pp. 705-712. Berlin Heidelberg: Springer. Tarawneh, R. M., Keller, P., & Ebert, A. (2011). A General Introduction to Graph Visualisation Techniques. In Proceedings of the International Research Training Group 1131 (IRTG 1131) - Visualisation of Large and Unstructured Data Sets Workshop, pp. 151–164. Teshome, H. L. (2013). Evaluation of network comparison approaches, Linnaeus University. Theodosiou, T., Darzentas, N., Angelis, L., & Ouzounis, C. A. (2008). PuReD-MCL: A Graph-Based PubMed Document Clustering Methodology. Bioinformatics, 24(17), 1935–1941. Thomas, J. J., & Cook, K. A. (2005). Data Representations and Transformations. In Illuminating the Path: The Research and Development for Visual Analytics (Thomas, J. J., & Cook, K. A., Eds.), pp. 105-136. Los Alamitos, CA: IEEE Computer Society Press. Tikhonova, A., & Ma, K.-l. (2008). A Scalable Parallel Force-Directed Graph Layout Algorithm. In Proceedings of the 8th Eurographics Conference on Parallel Graphics and Visualisation, pp. 25-32. Tollis, I. G., & Xia, C. (1994). Drawing telecommunication networks. In Proceedings of International Symposium on Graph Drawing, pp. 206-217. Ustalov, D., Panchenko, A., & Biemann, C. (2017). Watset: Automatic Induction of Synsets from a Graph of Synonyms. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 1579–1590. Vehlow, C., Beck, F., & Weiskopf, D. (2016). Visualising Group Structures in Graphs: A Survey. Computer Graphics Forum, 36(6), 201-225. Venturini, T., Jacomy, M., & Pereira, D. (2014). Visual Network Analysis. Sciences Pomedialab. Virtuoso SPARQL Query Editor. (n.d.). [online] Available at: https://dbpedia.org/sparql. [Assessed on 29 January 2020] Walshaw, C. (2006). A Multilevel Algorithm for Force-Directed Graph Drawing. Journal of Graph Algorithms and Applications, 7(3), 253–285. Wan, T. W. F., Ranaivo-Malançon, B., & Chua, S. (2017). Minimising human labelling effort for annotating named entities in historical newspaper. Journal of Telecommunication, Electronic and Computer Engineering, 9(2-10), 41-46. Ward, M. O., Grinstein, G., & Keim, D. (2015). Interactive Data Visualisation: Foundations, Techniques and Applications, CRC Press. Warfield, J. N. (1977). Crossing Theory and Hierarchy Mapping. IEEE Transactions on Systems, Man, and Cybernetics, 7(7), 505-523. Xu, K., Rooney, C., Passmore, P., Ham, D.-H., & Nguyen, P. H. (2012). A User Study on Curved Edges in Graph Visualisation. IEEE Transactions on Visualisation and Computer Graphics, 18(12), 2449-2456. Zaidi, F., Archambault, D., & Melançon, G. (2010). Evaluating the Quality of Clustering Algorithms using Cluster Path Lengths. In Proceedings of Industrial Conference on Data Mining, pp. 42-56. Zhao, Y., & Karypis, G. (2011). Document clustering. In Encyclopedia of Machine Learning (Sammut, C., & Webb, G. I., Eds.), pp. 293-298. Springer Science & Business Media. |