Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-usm-ep.31162 |
---|---|
record_format |
uketd_dc |
spelling |
my-usm-ep.311622016-11-21T08:06:39Z Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination 2009-07 Supramaniam, Shamani QA1 Mathematics (General) Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U). n=2 Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk 00 1(z) = zP + L anzn, (z E U) n=p+1 dengan A := AI. Pertimbangkan dua fungsi dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9 berbentuk 00 (J * g)(z) = zP + L anbnzn. n=p+1 Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk in C and H(U) be the class of analytic functions defined in U. Also let A denote the class of all functions I analytic in the open unit disk U := {z E C : Izl < I}, and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series expansion of the form 00 I(z) = z + ~ (LnZn (z E U). n=2 Let Ap (p EN) be the class of all analytic functions of the form 00 fez) = zP + ~ (LnZn n=p+l with A:= AI. Consider two functions in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9 defined by 00 (J * g)(z) = zP + ~ anbnzn . "=p+l 2009-07 Thesis http://eprints.usm.my/31162/ http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Matematik |
institution |
Universiti Sains Malaysia |
collection |
USM Institutional Repository |
language |
English |
topic |
QA1 Mathematics (General) |
spellingShingle |
QA1 Mathematics (General) Supramaniam, Shamani Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination |
description |
Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam
C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis
1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A
mempunyai siri Taylor berbentuk
00
l(z) = z + L anzn, (z E U).
n=2
Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk
00
1(z) = zP + L anzn, (z E U)
n=p+1
dengan A := AI.
Pertimbangkan dua fungsi
dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9
berbentuk
00
(J * g)(z) = zP + L anbnzn.
n=p+1
Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk
in C and H(U) be the class of analytic functions defined in U. Also let A denote
the class of all functions I analytic in the open unit disk U := {z E C : Izl < I},
and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series
expansion of the form
00
I(z) = z + ~ (LnZn (z E U).
n=2
Let Ap (p EN) be the class of all analytic functions of the form
00
fez) = zP + ~ (LnZn
n=p+l
with A:= AI.
Consider two functions
in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9
defined by
00
(J * g)(z) = zP + ~ anbnzn
.
"=p+l |
format |
Thesis |
qualification_level |
Master's degree |
author |
Supramaniam, Shamani |
author_facet |
Supramaniam, Shamani |
author_sort |
Supramaniam, Shamani |
title |
Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
title_short |
Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
title_full |
Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
title_fullStr |
Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
title_full_unstemmed |
Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
title_sort |
convolution and coefficient problems
for multivalent functions defined by
subordination |
granting_institution |
Universiti Sains Malaysia |
granting_department |
Pusat Pengajian Sains Matematik |
publishDate |
2009 |
url |
http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf |
_version_ |
1747820401674682368 |