Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination

Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U...

Full description

Saved in:
Bibliographic Details
Main Author: Supramaniam, Shamani
Format: Thesis
Language:English
Published: 2009
Subjects:
Online Access:http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.31162
record_format uketd_dc
spelling my-usm-ep.311622016-11-21T08:06:39Z Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination 2009-07 Supramaniam, Shamani QA1 Mathematics (General) Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U). n=2 Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk 00 1(z) = zP + L anzn, (z E U) n=p+1 dengan A := AI. Pertimbangkan dua fungsi dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9 berbentuk 00 (J * g)(z) = zP + L anbnzn. n=p+1 Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk in C and H(U) be the class of analytic functions defined in U. Also let A denote the class of all functions I analytic in the open unit disk U := {z E C : Izl < I}, and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series expansion of the form 00 I(z) = z + ~ (LnZn (z E U). n=2 Let Ap (p EN) be the class of all analytic functions of the form 00 fez) = zP + ~ (LnZn n=p+l with A:= AI. Consider two functions in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9 defined by 00 (J * g)(z) = zP + ~ anbnzn . "=p+l 2009-07 Thesis http://eprints.usm.my/31162/ http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Matematik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA1 Mathematics (General)
spellingShingle QA1 Mathematics (General)
Supramaniam, Shamani
Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
description Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U). n=2 Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk 00 1(z) = zP + L anzn, (z E U) n=p+1 dengan A := AI. Pertimbangkan dua fungsi dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9 berbentuk 00 (J * g)(z) = zP + L anbnzn. n=p+1 Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk in C and H(U) be the class of analytic functions defined in U. Also let A denote the class of all functions I analytic in the open unit disk U := {z E C : Izl < I}, and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series expansion of the form 00 I(z) = z + ~ (LnZn (z E U). n=2 Let Ap (p EN) be the class of all analytic functions of the form 00 fez) = zP + ~ (LnZn n=p+l with A:= AI. Consider two functions in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9 defined by 00 (J * g)(z) = zP + ~ anbnzn . "=p+l
format Thesis
qualification_level Master's degree
author Supramaniam, Shamani
author_facet Supramaniam, Shamani
author_sort Supramaniam, Shamani
title Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_short Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_full Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_fullStr Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_full_unstemmed Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_sort convolution and coefficient problems for multivalent functions defined by subordination
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Matematik
publishDate 2009
url http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf
_version_ 1747820401674682368