Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models

Dalam bidang pemodelan regresi linear, regresi kuasa dua terkecil (LS) klasik adalah mudah dipengaruhi oleh titik terpencil manakala penganggar regresi rendah-kerosakan seperti regresi M dan regresi pengaruh terbatas mampu menahan pengaruh peratusan kecil titik terpencil. Penganggar tinggi-kerosa...

Full description

Saved in:
Bibliographic Details
Main Author: Alih, Ekele
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.usm.my/32288/1/EKELE_ALIH.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.32288
record_format uketd_dc
spelling my-usm-ep.322882019-04-12T05:25:43Z Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models 2015-06 Alih, Ekele QA1 Mathematics (General) Dalam bidang pemodelan regresi linear, regresi kuasa dua terkecil (LS) klasik adalah mudah dipengaruhi oleh titik terpencil manakala penganggar regresi rendah-kerosakan seperti regresi M dan regresi pengaruh terbatas mampu menahan pengaruh peratusan kecil titik terpencil. Penganggar tinggi-kerosakan seperti kuasa dua trim terkecil (LTS) dan penganggar regresi (MM) adalah teguh terhadap sebanyak 50% daripada pencemaran data. Masalah prosedur penganggar ini termasuklah permintaan pengkomputeran luas dan kebolehubahan subpensampelan, kerentanan koefisien teruk terhadap kebolehubahan kecil dalam nilai awal, sisihan dalaman daripada trend umum dan kebolehan dalam data bersih dan situasi rendah-kerosakan. Kajian ini mencadangkan suatu penganggar regresi baru yang menyelesaikan masalah dalam model regresi berganda dan regresi multivariat serta menyediakan maklumat berguna tentang kehadiran dan struktur titik terpencil multivariat. In the field of linear regression modelling, the classical least squares (LS) regression is susceptible to a single outlier whereas low-breakdown regression estimators like M regression and bounded influence regression are able to resist the influence of a small percentage of outliers. High-breakdown estimators like the least trimmed squares (LTS) and MM regression estimators are resistant to as much as 50% of data contamination. The problems with these estimation procedures include enormous computational demands and subsampling variability, severe coefficient susceptibility to very small variability in initial values, internal deviation from the general trend and capabilities in clean data and in low breakdown situations. This study proposes a new high breakdown regression estimator that addresses these problems in multiple regression and multivariate regression models as well as providing insightful information about the presence and structure of multivariate outliers. 2015-06 Thesis http://eprints.usm.my/32288/ http://eprints.usm.my/32288/1/EKELE_ALIH.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Matematik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA1 Mathematics (General)
spellingShingle QA1 Mathematics (General)
Alih, Ekele
Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models
description Dalam bidang pemodelan regresi linear, regresi kuasa dua terkecil (LS) klasik adalah mudah dipengaruhi oleh titik terpencil manakala penganggar regresi rendah-kerosakan seperti regresi M dan regresi pengaruh terbatas mampu menahan pengaruh peratusan kecil titik terpencil. Penganggar tinggi-kerosakan seperti kuasa dua trim terkecil (LTS) dan penganggar regresi (MM) adalah teguh terhadap sebanyak 50% daripada pencemaran data. Masalah prosedur penganggar ini termasuklah permintaan pengkomputeran luas dan kebolehubahan subpensampelan, kerentanan koefisien teruk terhadap kebolehubahan kecil dalam nilai awal, sisihan dalaman daripada trend umum dan kebolehan dalam data bersih dan situasi rendah-kerosakan. Kajian ini mencadangkan suatu penganggar regresi baru yang menyelesaikan masalah dalam model regresi berganda dan regresi multivariat serta menyediakan maklumat berguna tentang kehadiran dan struktur titik terpencil multivariat. In the field of linear regression modelling, the classical least squares (LS) regression is susceptible to a single outlier whereas low-breakdown regression estimators like M regression and bounded influence regression are able to resist the influence of a small percentage of outliers. High-breakdown estimators like the least trimmed squares (LTS) and MM regression estimators are resistant to as much as 50% of data contamination. The problems with these estimation procedures include enormous computational demands and subsampling variability, severe coefficient susceptibility to very small variability in initial values, internal deviation from the general trend and capabilities in clean data and in low breakdown situations. This study proposes a new high breakdown regression estimator that addresses these problems in multiple regression and multivariate regression models as well as providing insightful information about the presence and structure of multivariate outliers.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Alih, Ekele
author_facet Alih, Ekele
author_sort Alih, Ekele
title Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models
title_short Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models
title_full Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models
title_fullStr Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models
title_full_unstemmed Cluster-Based Estimators For Multiple And Multivariate Linear Regression Models
title_sort cluster-based estimators for multiple and multivariate linear regression models
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Matematik
publishDate 2015
url http://eprints.usm.my/32288/1/EKELE_ALIH.pdf
_version_ 1747820559141437440