Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication

Dalam kajian ini, kaedah baru yang dipanggil sub-peleraian integer (ISD) berdasarkan prinsip Gallant, Lambert dan Vanstone (GLV) bagi mengira perkalian skalar kP berbentuk lengkung elips E melebihi kawasan terbatas utama Fp yang mempunyai pengiraan endomorphisms ψj yang efisyen bagi j = 1; 2, men...

全面介绍

Saved in:
书目详细资料
主要作者: Ajeena, Ruma Kareem K.
格式: Thesis
语言:English
出版: 2015
主题:
在线阅读:http://eprints.usm.my/32317/1/RUMA_KAREEM_K._AJEENA.pdf
标签: 添加标签
没有标签, 成为第一个标记此记录!
id my-usm-ep.32317
record_format uketd_dc
spelling my-usm-ep.323172019-04-12T05:25:46Z Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication 2015-03 Ajeena, Ruma Kareem K. QA1 Mathematics (General) Dalam kajian ini, kaedah baru yang dipanggil sub-peleraian integer (ISD) berdasarkan prinsip Gallant, Lambert dan Vanstone (GLV) bagi mengira perkalian skalar kP berbentuk lengkung elips E melebihi kawasan terbatas utama Fp yang mempunyai pengiraan endomorphisms ψj yang efisyen bagi j = 1; 2, menghasilkan nilai yang dihitung sebelum ini untuk λ jP, di mana λ j ∈ [1;n−1] telah dicadangkan. Jurang utama dalam kaedah GLV telah ditangani dengan menggunakan kaedah ISD. Skalar k dalam kaedah ISD telah dibahagikan dengan menggunakan rumusan k ≡ k11+k12λ1+k21+k22λ2 (mod n); dengan max{|k11|; |k12|} ≤ √ n dan max{|k21|; |k22|} ≤ √ n. Oleh yang demikian formula perkalian kP scalar ISD boleh dinyatakan seperti berikut: kP = k11P+k12ψ1(P)+k21P+k22ψ2(P): In this study, a new method called integer sub-decomposition (ISD) based on the Gallant, Lambert, and Vanstone (GLV) method to compute the scalar multiplication kP of the elliptic curve E over prime finite field Fp that have efficient computable endomorphisms ψj for j = 1; 2, resulting in pre-computed values of λ jP, where λ j ∈ [1;n−1] has been proposed. The major gaps in the GLV method are addressed using the ISD method. The scalar k, on the ISD method is decomposed using the formulation k ≡ k11+k12λ1+k21+k22λ2 (mod n); with max{|k11|; |k12|} ≤ √ n and max{|k21|; |k22|} ≤ √n. Thus, the ISD scalar multiplication kP formula can be expressed as follows: kP = k11P+k12ψ1(P)+k21P+k22ψ2(P): 2015-03 Thesis http://eprints.usm.my/32317/ http://eprints.usm.my/32317/1/RUMA_KAREEM_K._AJEENA.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Matematik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA1 Mathematics (General)
spellingShingle QA1 Mathematics (General)
Ajeena, Ruma Kareem K.
Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication
description Dalam kajian ini, kaedah baru yang dipanggil sub-peleraian integer (ISD) berdasarkan prinsip Gallant, Lambert dan Vanstone (GLV) bagi mengira perkalian skalar kP berbentuk lengkung elips E melebihi kawasan terbatas utama Fp yang mempunyai pengiraan endomorphisms ψj yang efisyen bagi j = 1; 2, menghasilkan nilai yang dihitung sebelum ini untuk λ jP, di mana λ j ∈ [1;n−1] telah dicadangkan. Jurang utama dalam kaedah GLV telah ditangani dengan menggunakan kaedah ISD. Skalar k dalam kaedah ISD telah dibahagikan dengan menggunakan rumusan k ≡ k11+k12λ1+k21+k22λ2 (mod n); dengan max{|k11|; |k12|} ≤ √ n dan max{|k21|; |k22|} ≤ √ n. Oleh yang demikian formula perkalian kP scalar ISD boleh dinyatakan seperti berikut: kP = k11P+k12ψ1(P)+k21P+k22ψ2(P): In this study, a new method called integer sub-decomposition (ISD) based on the Gallant, Lambert, and Vanstone (GLV) method to compute the scalar multiplication kP of the elliptic curve E over prime finite field Fp that have efficient computable endomorphisms ψj for j = 1; 2, resulting in pre-computed values of λ jP, where λ j ∈ [1;n−1] has been proposed. The major gaps in the GLV method are addressed using the ISD method. The scalar k, on the ISD method is decomposed using the formulation k ≡ k11+k12λ1+k21+k22λ2 (mod n); with max{|k11|; |k12|} ≤ √ n and max{|k21|; |k22|} ≤ √n. Thus, the ISD scalar multiplication kP formula can be expressed as follows: kP = k11P+k12ψ1(P)+k21P+k22ψ2(P):
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Ajeena, Ruma Kareem K.
author_facet Ajeena, Ruma Kareem K.
author_sort Ajeena, Ruma Kareem K.
title Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication
title_short Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication
title_full Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication
title_fullStr Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication
title_full_unstemmed Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication
title_sort integer sub-decomposition (isd) method for elliptic curve scalar multiplication
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Matematik
publishDate 2015
url http://eprints.usm.my/32317/1/RUMA_KAREEM_K._AJEENA.pdf
_version_ 1747820565011365888