A Class Of Measurable Dynamical Systems For Chaotic Cryptography

Teori kaos merupakan teori yang merangkumi semua aspek sains. Kini, dalam dunia hari ini, ia turut merangkumi semua aspek matematik, fizik, biologi, kewangan, komputer dan juga muzik. Sebagai suatu daripada aplikasi teori ini, keselamatan komunikasi mula dikaji seawal 1990-an. Daya tarikan utama...

Full description

Saved in:
Bibliographic Details
Main Author: Akhshani, Afshin
Format: Thesis
Language:English
Published: 2008
Subjects:
Online Access:http://eprints.usm.my/41257/1/Afshin_Akhshani24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.41257
record_format uketd_dc
spelling my-usm-ep.412572019-04-12T05:27:01Z A Class Of Measurable Dynamical Systems For Chaotic Cryptography 2008-04 Akhshani, Afshin QC1 Physics (General) Teori kaos merupakan teori yang merangkumi semua aspek sains. Kini, dalam dunia hari ini, ia turut merangkumi semua aspek matematik, fizik, biologi, kewangan, komputer dan juga muzik. Sebagai suatu daripada aplikasi teori ini, keselamatan komunikasi mula dikaji seawal 1990-an. Daya tarikan utama teori ini digunakan sebagai asas untuk membangunkan kriptosistem adalah disebabkan sifat intrinsiknya, antaranya: kepekaannya terhadap keadaan awal dan parameter kawalan, perlakuan seakan-akan rawak, ergodisiti dan sifat campurannya, yang mempunyai hubungan erat dengan keperluan kriptografi. Sifat teori ini yang paling penting adalah ergodisiti dan campuran, yang boleh dihubungkan dengan dua sifat kriptografi asas, iaitu kekeliruan (“confusion”) dan pembauran (“diffusion”). Bagi membuktikan ergodisiti dan kekuatan campuran, cukup dengan hanya menunjukkan bahawa sistem memperoleh ukuran takvarian dan entropi Kolmogorov-Sinai (K-S) daripada sudut pandangan sistem dinamik. Chaos theory is a blanketing theory that covers all aspects of science, hence, it shows up everywhere in the world today: mathematics, physics, biology, finance, computer and even music. As an application of chaos theory, secure communications have been studied since the early 1990s. The attractiveness of using chaos as the basis for developing cryptosystem is mainly due to the intrinsic nature of chaos such as the sensitivity to the initial condition and control parameter, random-like behaviors, ergodicity and mixing property, which have tight relationships with the requirements of cryptography. The most important features of chaos are ergodicity and mixing, which can be connected with two basic cryptographic properties; confusion and diffusion. To prove ergodicity and strength of the mixing, it’s enough to show that the system possess an invariant measure and Kolmogorov-Sinai (K-S) entropy from dynamical systems point of view. 2008-04 Thesis http://eprints.usm.my/41257/ http://eprints.usm.my/41257/1/Afshin_Akhshani24.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Fizik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QC1 Physics (General)
spellingShingle QC1 Physics (General)
Akhshani, Afshin
A Class Of Measurable Dynamical Systems For Chaotic Cryptography
description Teori kaos merupakan teori yang merangkumi semua aspek sains. Kini, dalam dunia hari ini, ia turut merangkumi semua aspek matematik, fizik, biologi, kewangan, komputer dan juga muzik. Sebagai suatu daripada aplikasi teori ini, keselamatan komunikasi mula dikaji seawal 1990-an. Daya tarikan utama teori ini digunakan sebagai asas untuk membangunkan kriptosistem adalah disebabkan sifat intrinsiknya, antaranya: kepekaannya terhadap keadaan awal dan parameter kawalan, perlakuan seakan-akan rawak, ergodisiti dan sifat campurannya, yang mempunyai hubungan erat dengan keperluan kriptografi. Sifat teori ini yang paling penting adalah ergodisiti dan campuran, yang boleh dihubungkan dengan dua sifat kriptografi asas, iaitu kekeliruan (“confusion”) dan pembauran (“diffusion”). Bagi membuktikan ergodisiti dan kekuatan campuran, cukup dengan hanya menunjukkan bahawa sistem memperoleh ukuran takvarian dan entropi Kolmogorov-Sinai (K-S) daripada sudut pandangan sistem dinamik. Chaos theory is a blanketing theory that covers all aspects of science, hence, it shows up everywhere in the world today: mathematics, physics, biology, finance, computer and even music. As an application of chaos theory, secure communications have been studied since the early 1990s. The attractiveness of using chaos as the basis for developing cryptosystem is mainly due to the intrinsic nature of chaos such as the sensitivity to the initial condition and control parameter, random-like behaviors, ergodicity and mixing property, which have tight relationships with the requirements of cryptography. The most important features of chaos are ergodicity and mixing, which can be connected with two basic cryptographic properties; confusion and diffusion. To prove ergodicity and strength of the mixing, it’s enough to show that the system possess an invariant measure and Kolmogorov-Sinai (K-S) entropy from dynamical systems point of view.
format Thesis
qualification_level Master's degree
author Akhshani, Afshin
author_facet Akhshani, Afshin
author_sort Akhshani, Afshin
title A Class Of Measurable Dynamical Systems For Chaotic Cryptography
title_short A Class Of Measurable Dynamical Systems For Chaotic Cryptography
title_full A Class Of Measurable Dynamical Systems For Chaotic Cryptography
title_fullStr A Class Of Measurable Dynamical Systems For Chaotic Cryptography
title_full_unstemmed A Class Of Measurable Dynamical Systems For Chaotic Cryptography
title_sort class of measurable dynamical systems for chaotic cryptography
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Fizik
publishDate 2008
url http://eprints.usm.my/41257/1/Afshin_Akhshani24.pdf
_version_ 1747820896875184128