Improved Image Enhancement Method For Non-Uniform Illumination And Low Ontrast Images Using Bihistogram Modification Approach
Dalam situasi tertentu, imej yang pencahayaan tidak seragam dan beza jelas rendah berkemungkinan akan dirakam. Imej-imej ini dianggap sebagai satu cabaran dalam bidang penglihatan komputer dan pengecaman corak. Teknik-teknik konvensional yang biasa digunakan untuk menyelesaikan masalah ini mempun...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://eprints.usm.my/41572/1/Improved_Image_Enhancement_Method_For_Non-Uniform_Illumination_And_Low_Ontrast_Images_Using_Bihistogram_Modification_Approach.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dalam situasi tertentu, imej yang pencahayaan tidak seragam dan beza jelas rendah
berkemungkinan akan dirakam. Imej-imej ini dianggap sebagai satu cabaran dalam
bidang penglihatan komputer dan pengecaman corak. Teknik-teknik konvensional
yang biasa digunakan untuk menyelesaikan masalah ini mempunyai beberapa
batasan. Sesetengah teknik memerlukan pelarasan parameter-parameter secara
manual. Selain itu, sesetengah teknik hanya tertumpu kepada satu atau dua aspek
daripada pengurangan hingar, peningkatan beza jelas, penambahbaikan ketidak
seragaman pencahayaan, dan pemeliharaan perincian imej. Oleh itu, penyelidikan ini
mencadangkan satu kaedah baharu iaitu " Bi-histogram Modification for Illumination
Correction " (BHMIC). Langkah pertama BHMIC ialah membezakan kawasan
terang dan gelap dalam sesuatu imej. Kemudian, ia diikuti dengan meningkatkan
beza jelas dan keadaan pencahayaan imej tersebut. Pada masa yang sama, proses
penyaringan diaplikasi untuk membuang perincian imej (seperti pinggir) dan hingar.
Ini dilakukan untuk memelihara perincian tersebut dan menghalang penguatan hingar.
Kaedah yang dicadangkan menggunakan anggapan pencahayaan dan pemantulan
untuk memisahkan kawasan terang dan gelap imej. Kemudian, kawasan-kawasan
tersebut dipertingkatkan dengan menggunakan peningkat terang dan gelap yang
diterbitkan secara berasingan. “Clipped Histogram Equalization” yang telah
diubahsuaikan kemudiannya digunakan untuk tujuan peningkatan beza jelas.
Akhirnya, perincian imej ditambahkan kembali kepada imej yang pencahayaannya
diperbetulkan dan beza jelasnya dipertingkatkan untuk menghasilkan imej keluaran
akhir. Analisis kualitatif menunjukkan bahawa BHMIC yang dicadangkan
mempunyai prestasi yang bagus dalam pemeliharaan butiran imej, peningkatan beza
jelas dan penyeragaman keadaan pencahayaan tanpa memperkuatkan hingar yang
tidak dikehendaki. Analisis kuantitatif menunjukkan bahawa BHMIC yang
dicadangkan adalah 38% hingga 42.9%, 0.8% hingga 4.7% and 0.7% hingga 2.3%
lebih baik daripada kaedah-kaedah lain yang telah diuji masing-masing dari segi
EME, NIQE dan entropy. Keputusan yang memberangsangkan ini menunjukkan
bahawa BHMIC berkemungkinan mampu digunakan sebagai pra-pemprosesan
kepada imej wajah untuk pengecaman wajah, imej perubatan untuk memudahkan
diagnosis penyakit dan imej fotografi untuk kegunaan peribadi.
________________________________________________________________________________________________________________________
In certain situations, low contrast and non-uniform illuminated images would be
captured. These images are considered as challenge in the field of computer vision
and pattern recognition. The conventional techniques that are commonly used to
solve this problem have some limitations. Some of these methods require manual
parameters tuning. Besides that, some of the methods are only focused on one or two
aspects of noise reduction, contrast enhancement, non-uniform illumination
enhancement and detail preservation. Hence, this study proposes a new method
which is Bi-histogram Modification for Illumination Correction (BHMIC). The
proposed BHMIC will first distinguish the bright and dark regions of an image. Then,
it is followed by enhancing the contrast and illumination condition of the image. At
the same time, filtering process is employed in order to remove the details of the
image (i.e. edges) and noises. It is done to preserve the details and avoid the
amplification of noises. The proposed method applies the illumination and
reflectance assumptions to separate the dark and bright regions of the image. Then,
these regions are enhanced using derived dark and bright enhancers separately. The
modified clipped histogram equalization is then applied for contrast enhancement
purpose. Finally, the details of the image are added to the illumination corrected and
contrast enhanced image as an output image. Qualitative analysis shows that the
proposed BHMIC has good performance in detail preservation, contrast enhancement
and illumination condition enhancement without significantly amplifying unwanted
noise. The quantitative analysis shows that the proposed BHMIC is 38% to 42.9%,
0.8% to 4.7% and 0.7% to 2.3% better than other tested methods in EME, NIQE and
entropy, respectively. The promising results suggest that the proposed BHMIC could
probably be used in pre-processing of face images for face recognition, medical
images for easier disease symptoms diagnosis and photography images for personal
usage.
|
---|