Initialization Methods For Conventional Fuzzy C-Means And Its Application Towards Colour Image Segmentation

Due to its capability in providing a particularly promising solution to clustering problems, the conventional Fuzzy C-Mean (FCM) algorithm is widely used as a segmentation method. However, it is very sensitive to the initialization conditions of number of clusters and initial cluster centres. Thus,...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Tan , Khang Siang
التنسيق: أطروحة
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://eprints.usm.my/42775/1/TAN_KHANG_SIANG.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Due to its capability in providing a particularly promising solution to clustering problems, the conventional Fuzzy C-Mean (FCM) algorithm is widely used as a segmentation method. However, it is very sensitive to the initialization conditions of number of clusters and initial cluster centres. Thus, three initialization schemes for the conventional FCM algorithm namely the Hierarchical Approach (HA), the Colour Quantization (CQ) and the Histogram Thresholding (HT) are proposed to automatically obtain the initialization conditions for the conventional FCM algorithm.