Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites

Nanosized B-type carbonated hydroxyapatite (CHA) was successfully synthesized through nanoemulsion method, by both dropwise (DW) and direct pouring (DP) techniques. The CHA powders obtained by DP method contained higher CO3 2- content with smaller near-spherical size, as compared to the one by DW wi...

Full description

Saved in:
Bibliographic Details
Main Author: Kee, Chia Ching
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/45806/1/KEE%20CHIA%20CHING24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.45806
record_format uketd_dc
spelling my-usm-ep.458062019-11-29T09:07:41Z Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites 2013-11 Kee, Chia Ching TN1-997 Mining engineering. Metallurgy Nanosized B-type carbonated hydroxyapatite (CHA) was successfully synthesized through nanoemulsion method, by both dropwise (DW) and direct pouring (DP) techniques. The CHA powders obtained by DP method contained higher CO3 2- content with smaller near-spherical size, as compared to the one by DW with elongated shape. Moreover, the CHA particle size was found to decrease with increasing CO3 2- content, with maximum CO3 2- substitution of 14 wt%. Annealing followed by carbonation at cooling stage on CHA was carried out in the range of 300 900 °C. The optimum temperature of 700°C was determined from the adequate B-type CO3 2- content retained and improved crystallinity of the annealed powder. In the biocomposite fabrication of CHA with poly(L-lactide) (PLLA) and/or poly(vinyl alcohol) (PVA), hydrogen bonding was deduced to form between hydroxyl group of CHA and carbonyl of PLLA, while no interaction was observed between CHA with PVA. When CHA/PLLA/PVA biocomposites were fabricated, PLLA served as coupling agent which bridged CHA and PVA via hydrogen bonding. From the mechanical aspect, diametral tensile strength (DTS) of the biocomposites was found to increase with increasing polymer loading and when PLLA was added instead of PVA. Nevertheless, CHA/PLLA/PVA biocomposites exhibited comparable DTS value at lower polymer content. In terms of bioactivity, the CHA/PLLA/PVA biocomposite showed better resorption rate and apatite formation as compared to CHA/PLLA, while CHA/PVA was low with highest weight loss in simulated body fluid. 2013-11 Thesis http://eprints.usm.my/45806/ http://eprints.usm.my/45806/1/KEE%20CHIA%20CHING24.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Kejuruteraan Bahan dan Sumber Mineral
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic TN1-997 Mining engineering
Metallurgy
spellingShingle TN1-997 Mining engineering
Metallurgy
Kee, Chia Ching
Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites
description Nanosized B-type carbonated hydroxyapatite (CHA) was successfully synthesized through nanoemulsion method, by both dropwise (DW) and direct pouring (DP) techniques. The CHA powders obtained by DP method contained higher CO3 2- content with smaller near-spherical size, as compared to the one by DW with elongated shape. Moreover, the CHA particle size was found to decrease with increasing CO3 2- content, with maximum CO3 2- substitution of 14 wt%. Annealing followed by carbonation at cooling stage on CHA was carried out in the range of 300 900 °C. The optimum temperature of 700°C was determined from the adequate B-type CO3 2- content retained and improved crystallinity of the annealed powder. In the biocomposite fabrication of CHA with poly(L-lactide) (PLLA) and/or poly(vinyl alcohol) (PVA), hydrogen bonding was deduced to form between hydroxyl group of CHA and carbonyl of PLLA, while no interaction was observed between CHA with PVA. When CHA/PLLA/PVA biocomposites were fabricated, PLLA served as coupling agent which bridged CHA and PVA via hydrogen bonding. From the mechanical aspect, diametral tensile strength (DTS) of the biocomposites was found to increase with increasing polymer loading and when PLLA was added instead of PVA. Nevertheless, CHA/PLLA/PVA biocomposites exhibited comparable DTS value at lower polymer content. In terms of bioactivity, the CHA/PLLA/PVA biocomposite showed better resorption rate and apatite formation as compared to CHA/PLLA, while CHA/PVA was low with highest weight loss in simulated body fluid.
format Thesis
qualification_level Master's degree
author Kee, Chia Ching
author_facet Kee, Chia Ching
author_sort Kee, Chia Ching
title Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites
title_short Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites
title_full Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites
title_fullStr Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites
title_full_unstemmed Development Of Carbonated Hydroxyapatite/ Poly(L-Lactide)/ Poly(Vinyl Alcohol) Biocomposites
title_sort development of carbonated hydroxyapatite/ poly(l-lactide)/ poly(vinyl alcohol) biocomposites
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Kejuruteraan Bahan dan Sumber Mineral
publishDate 2013
url http://eprints.usm.my/45806/1/KEE%20CHIA%20CHING24.pdf
_version_ 1747821570758279168