Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media

Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby re...

Full description

Saved in:
Bibliographic Details
Main Author: Raju, Gunasunderi
Format: Thesis
Language:English
Published: 2014
Subjects:
Online Access:http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.46106
record_format uketd_dc
spelling my-usm-ep.461062020-02-06T05:51:19Z Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media 2014-02 Raju, Gunasunderi TP1-1185 Chemical technology Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby report our findings on the preparation, characterization, and the properties of three types of biocomposites containing chitosan (CTS) and epoxidized natural rubber (ENR) prepared via different methods. The first type, CTS-g-ENR, was obtained via acid-induced reaction of ENR50 with CTS in the presence of AlCl3.6H2O. Moreover, the NMR spectral analysis revealed that the epoxy content of CTS-g-ENR-P1 is 22.36%, suggesting that the grafting of CTS onto the backbone of the ENR had occurred. This revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR and the appearance of new bands at 1219, 902, and 733 cm-1 in the infrared spectrum of CTS-g-ENR-P1. The Tg of CTS-g-ENR-P2 is determined to be 2.88 °C which is significantly higher than that of ENR50 (-27.2 °C). The thermal stability of CTS-g-ENR is found to be higher compared to that of CTS, but lower than the one for ENR50. SEM micrographs of CTS-g-ENR-P1 show a smooth topographical texture with no phased-out entity, confirming that CTS has been successfully grafted onto the backbone of the ENR. 2014-02 Thesis http://eprints.usm.my/46106/ http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Kejuruteraan Kimia
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic TP1-1185 Chemical technology
spellingShingle TP1-1185 Chemical technology
Raju, Gunasunderi
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
description Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby report our findings on the preparation, characterization, and the properties of three types of biocomposites containing chitosan (CTS) and epoxidized natural rubber (ENR) prepared via different methods. The first type, CTS-g-ENR, was obtained via acid-induced reaction of ENR50 with CTS in the presence of AlCl3.6H2O. Moreover, the NMR spectral analysis revealed that the epoxy content of CTS-g-ENR-P1 is 22.36%, suggesting that the grafting of CTS onto the backbone of the ENR had occurred. This revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR and the appearance of new bands at 1219, 902, and 733 cm-1 in the infrared spectrum of CTS-g-ENR-P1. The Tg of CTS-g-ENR-P2 is determined to be 2.88 °C which is significantly higher than that of ENR50 (-27.2 °C). The thermal stability of CTS-g-ENR is found to be higher compared to that of CTS, but lower than the one for ENR50. SEM micrographs of CTS-g-ENR-P1 show a smooth topographical texture with no phased-out entity, confirming that CTS has been successfully grafted onto the backbone of the ENR.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Raju, Gunasunderi
author_facet Raju, Gunasunderi
author_sort Raju, Gunasunderi
title Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_short Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_full Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_fullStr Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_full_unstemmed Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_sort preparation and characterization of chitosan-enr50 biocomposites and their potential application as slow-release biodegradable matrices for cu(ii) and 2-naphthol in aqueous media
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Kejuruteraan Kimia
publishDate 2014
url http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf
_version_ 1747821611644354560