Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby re...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-usm-ep.46106 |
---|---|
record_format |
uketd_dc |
spelling |
my-usm-ep.461062020-02-06T05:51:19Z Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media 2014-02 Raju, Gunasunderi TP1-1185 Chemical technology Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby report our findings on the preparation, characterization, and the properties of three types of biocomposites containing chitosan (CTS) and epoxidized natural rubber (ENR) prepared via different methods. The first type, CTS-g-ENR, was obtained via acid-induced reaction of ENR50 with CTS in the presence of AlCl3.6H2O. Moreover, the NMR spectral analysis revealed that the epoxy content of CTS-g-ENR-P1 is 22.36%, suggesting that the grafting of CTS onto the backbone of the ENR had occurred. This revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR and the appearance of new bands at 1219, 902, and 733 cm-1 in the infrared spectrum of CTS-g-ENR-P1. The Tg of CTS-g-ENR-P2 is determined to be 2.88 °C which is significantly higher than that of ENR50 (-27.2 °C). The thermal stability of CTS-g-ENR is found to be higher compared to that of CTS, but lower than the one for ENR50. SEM micrographs of CTS-g-ENR-P1 show a smooth topographical texture with no phased-out entity, confirming that CTS has been successfully grafted onto the backbone of the ENR. 2014-02 Thesis http://eprints.usm.my/46106/ http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Kejuruteraan Kimia |
institution |
Universiti Sains Malaysia |
collection |
USM Institutional Repository |
language |
English |
topic |
TP1-1185 Chemical technology |
spellingShingle |
TP1-1185 Chemical technology Raju, Gunasunderi Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media |
description |
Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby report our findings on the preparation, characterization, and the properties of three types of biocomposites containing chitosan (CTS) and epoxidized natural rubber (ENR) prepared via different methods. The first type, CTS-g-ENR, was obtained via acid-induced reaction of ENR50 with CTS in the presence of AlCl3.6H2O. Moreover, the NMR spectral analysis revealed that the epoxy content of CTS-g-ENR-P1 is 22.36%, suggesting that the grafting of CTS onto the backbone of the ENR had occurred. This revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR and the appearance of new bands at 1219, 902, and 733 cm-1 in the infrared spectrum of CTS-g-ENR-P1. The Tg of CTS-g-ENR-P2 is determined to be 2.88 °C which is significantly higher than that of ENR50 (-27.2 °C). The thermal stability of CTS-g-ENR is found to be higher compared to that of CTS, but lower than the one for ENR50. SEM micrographs of CTS-g-ENR-P1 show a smooth topographical texture with no phased-out entity, confirming that CTS has been successfully grafted onto the backbone of the ENR. |
format |
Thesis |
qualification_name |
Doctor of Philosophy (PhD.) |
qualification_level |
Doctorate |
author |
Raju, Gunasunderi |
author_facet |
Raju, Gunasunderi |
author_sort |
Raju, Gunasunderi |
title |
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media |
title_short |
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media |
title_full |
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media |
title_fullStr |
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media |
title_full_unstemmed |
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media |
title_sort |
preparation and characterization of chitosan-enr50 biocomposites and their potential application as slow-release biodegradable matrices for cu(ii) and 2-naphthol in aqueous media |
granting_institution |
Universiti Sains Malaysia |
granting_department |
Pusat Pengajian Kejuruteraan Kimia |
publishDate |
2014 |
url |
http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf |
_version_ |
1747821611644354560 |