Pretreatment Of Oil Palm Frond By Phanerochaete Crysosporium Ck01 And Enzymatic Hydrolysis For Ethanol Production By Saccharomyces Cerevisiae Hc10

Oil palm frond (OPF) is one of the most abundant waste generated from an oil palm plantation. OPF can be utilized as a feedstock for bioethanol and can simultaneously address its disposal issue in the plantation. In this project, OPF was divided into two types of feedstock; biomass and juice by m...

全面介紹

Saved in:
書目詳細資料
主要作者: Halim, Farah Amani Abdul
格式: Thesis
語言:English
出版: 2018
主題:
在線閱讀:http://eprints.usm.my/47497/1/FARAH%20AMANI%20ABDUL%20HALIM%20-%20PRETREATMENT%20OF%20OIL%20PALM%20FROND%20BY%20Phanerochaete%20crysosporium%20CK01%20AND%20ENZYMATIC%20HYDROLYSIS%20FOR%20ETHANOL%20PRODUCTION%20BY%20Saccharomyces%20cerevisiae%20HC10.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Oil palm frond (OPF) is one of the most abundant waste generated from an oil palm plantation. OPF can be utilized as a feedstock for bioethanol and can simultaneously address its disposal issue in the plantation. In this project, OPF was divided into two types of feedstock; biomass and juice by mechanical pressing. Firstly, the dried biomass was biologically treated using white-rot fungi; Phanerochaete chrysosporium CK01 for biodelignification. Two parameters were tested; effect of inoculum size and fermentation duration. The best parameters were inoculum size of 1.0x106 spore/mL and 3 weeks of fermentation duration which gave 27.87% of delignification. In the second stage, the treated biomass was subjected to enzymatic hydrolysis by either individual or in combination to produce a sugar hydrolysate. Two parameters tested were enzyme loading (in individual enzymatic hydrolysis) or enzyme ratio (in combined enzymatic hydrolysis; Cellulase A “Amano” 3 and Hemicellulase “Amano” 90) and hydrolysis time. The result shows that the combined (cellulase and hemicellulase) enzymatic hydrolysis produces higher amount of simple sugar (5.15g/L) using a combination of enzyme ratio of 1:4 (cellulase:hemicellulase) with a hydrolysis time of 120 minutes compared to individual enzymatic hydrolysis (3.26g/L). Prior to beginning of the third stage, the amount of simple sugar in the hydrolysate (OPFH) and juice (OPFJ) were compared using high performance liquid chromatography (HPLC) analysis.