C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation

Nowadays, scientific visualization is an important branch in computer graphics to graphically visualize the scientific data from three dimensional phenomena. The construction of a surface usually involves generating a set of surface patches that smoothly connected together and the surface should inh...

Full description

Saved in:
Bibliographic Details
Main Author: Yeong, Yee Yon
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.usm.my/48367/1/Thesis%28YEONG%20YEE%20YON%29%20cut.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.48367
record_format uketd_dc
spelling my-usm-ep.483672021-02-21T07:40:53Z C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation 2019-05 Yeong, Yee Yon QA1-939 Mathematics Nowadays, scientific visualization is an important branch in computer graphics to graphically visualize the scientific data from three dimensional phenomena. The construction of a surface usually involves generating a set of surface patches that smoothly connected together and the surface should inherit certain shape property of the data like non-negativity. The construction of non-negativity preserving 1C interpolation surface to scattered data is considered. The given data is triangulated using Delaunay triangulation. The interpolating surface to scattered data is piecewise with Bézier triangular patches. The surfaces are produced using the method of Clough-Tocher split. Sufficient non-negativity conditions on the Bézier ordinates are derived to ensure the non-negativity of a cubic Bézier triangular patch. New set of lower bounds is proposed to the Bézier ordinates. The initial values of the Bézier ordinates are determined by the given data and the estimated gradients at the data sites. The Bézier ordinates are adjusted if necessary by modifying the gradients at the data sites so that the Bézier ordinates fulfill the non-negativity conditions. The scheme for constructing the non-negativity preserving surface is local. It constructs 1C interpolating surface to scattered data subject to constraint plane. Some graphical examples are presented. 2019-05 Thesis http://eprints.usm.my/48367/ http://eprints.usm.my/48367/1/Thesis%28YEONG%20YEE%20YON%29%20cut.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Matematik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA1-939 Mathematics
spellingShingle QA1-939 Mathematics
Yeong, Yee Yon
C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation
description Nowadays, scientific visualization is an important branch in computer graphics to graphically visualize the scientific data from three dimensional phenomena. The construction of a surface usually involves generating a set of surface patches that smoothly connected together and the surface should inherit certain shape property of the data like non-negativity. The construction of non-negativity preserving 1C interpolation surface to scattered data is considered. The given data is triangulated using Delaunay triangulation. The interpolating surface to scattered data is piecewise with Bézier triangular patches. The surfaces are produced using the method of Clough-Tocher split. Sufficient non-negativity conditions on the Bézier ordinates are derived to ensure the non-negativity of a cubic Bézier triangular patch. New set of lower bounds is proposed to the Bézier ordinates. The initial values of the Bézier ordinates are determined by the given data and the estimated gradients at the data sites. The Bézier ordinates are adjusted if necessary by modifying the gradients at the data sites so that the Bézier ordinates fulfill the non-negativity conditions. The scheme for constructing the non-negativity preserving surface is local. It constructs 1C interpolating surface to scattered data subject to constraint plane. Some graphical examples are presented.
format Thesis
qualification_level Master's degree
author Yeong, Yee Yon
author_facet Yeong, Yee Yon
author_sort Yeong, Yee Yon
title C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation
title_short C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation
title_full C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation
title_fullStr C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation
title_full_unstemmed C1 Non-Negativity Preserving Interpolation Using Clough-Tocher Triangulation
title_sort c1 non-negativity preserving interpolation using clough-tocher triangulation
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Matematik
publishDate 2019
url http://eprints.usm.my/48367/1/Thesis%28YEONG%20YEE%20YON%29%20cut.pdf
_version_ 1747821924769071104