Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)

Dormancy is a way for bacteria to survive in unfavourable conditions such as nutrient starvation, very high temperature and desiccation, and toxin presence in the environment. Although genetic and metabolic regulations of dormancy for pathogens are well understood, metabolic regulation for marine ba...

Full description

Saved in:
Bibliographic Details
Main Author: Tarmizi, Diyana
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://eprints.usm.my/51851/1/DIYANA%20BINTI%20TARMIZI%20-%20TESIS.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.51851
record_format uketd_dc
spelling my-usm-ep.518512022-03-09T03:34:26Z Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1) 2021-03 Tarmizi, Diyana QH1-278.5 Natural history (General) Dormancy is a way for bacteria to survive in unfavourable conditions such as nutrient starvation, very high temperature and desiccation, and toxin presence in the environment. Although genetic and metabolic regulations of dormancy for pathogens are well understood, metabolic regulation for marine bacteria entering dormancy is scarcely studied. Microbulbifer aggregans sp. CCB-MM1 isolated from estuarine sediment of Matang Mangrove Forest, Perak, Malaysia, possesses rod-coccus cell cycle in which coccus cell is its dormant form. Furthermore, it shows cell aggregation before changing cell morphology to coccus and has ability to degrade polysaccharide such as starch. RNA-sequencing (RNA-seq) analysis of CCB-MM1 revealed that atpD from ATP synthase Operon II (ASOII) together with sulfite reductase gene of dissimilative sulfate reduction pathway, asrA were highly expressed whereas sulfite reductase gene of assimilative sulfate reduction pathway, cysI was suppressed in dormant state. Based on that information, this study was conducted with the aim to investigate the relationship between sulfate reduction pathways and dormancy of CCB-MM1. The atpD, asrA, and cysI disruption mutants were constructed and cultured in four different media which were modified 0.1 % high nutrient artificial seawater medium (H-ASWM) broth with and without MgSO4 and modified artificial seawater (ASW) with and without MgSO4. 2021-03 Thesis http://eprints.usm.my/51851/ http://eprints.usm.my/51851/1/DIYANA%20BINTI%20TARMIZI%20-%20TESIS.pdf application/pdf en public masters Perpustakaan Hamzah Sendut Pusat Pengajian Sains Kajihayat
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QH1-278.5 Natural history (General)
spellingShingle QH1-278.5 Natural history (General)
Tarmizi, Diyana
Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)
description Dormancy is a way for bacteria to survive in unfavourable conditions such as nutrient starvation, very high temperature and desiccation, and toxin presence in the environment. Although genetic and metabolic regulations of dormancy for pathogens are well understood, metabolic regulation for marine bacteria entering dormancy is scarcely studied. Microbulbifer aggregans sp. CCB-MM1 isolated from estuarine sediment of Matang Mangrove Forest, Perak, Malaysia, possesses rod-coccus cell cycle in which coccus cell is its dormant form. Furthermore, it shows cell aggregation before changing cell morphology to coccus and has ability to degrade polysaccharide such as starch. RNA-sequencing (RNA-seq) analysis of CCB-MM1 revealed that atpD from ATP synthase Operon II (ASOII) together with sulfite reductase gene of dissimilative sulfate reduction pathway, asrA were highly expressed whereas sulfite reductase gene of assimilative sulfate reduction pathway, cysI was suppressed in dormant state. Based on that information, this study was conducted with the aim to investigate the relationship between sulfate reduction pathways and dormancy of CCB-MM1. The atpD, asrA, and cysI disruption mutants were constructed and cultured in four different media which were modified 0.1 % high nutrient artificial seawater medium (H-ASWM) broth with and without MgSO4 and modified artificial seawater (ASW) with and without MgSO4.
format Thesis
qualification_level Master's degree
author Tarmizi, Diyana
author_facet Tarmizi, Diyana
author_sort Tarmizi, Diyana
title Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)
title_short Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)
title_full Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)
title_fullStr Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)
title_full_unstemmed Study On The Relationship Between Sulfate Reduction Pathways And Dormancy Of Microbulbifer Aggregans (Ccb-Mm1)
title_sort study on the relationship between sulfate reduction pathways and dormancy of microbulbifer aggregans (ccb-mm1)
granting_institution Perpustakaan Hamzah Sendut
granting_department Pusat Pengajian Sains Kajihayat
publishDate 2021
url http://eprints.usm.my/51851/1/DIYANA%20BINTI%20TARMIZI%20-%20TESIS.pdf
_version_ 1747822106873167872