Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods

In regions renowned for geothermal activity, the presence and characteristics of hot springs are intricately linked to underlying geological discontinuities, primarily faults, fractures, and shear zones. This study harnesses the prowess of ground magnetic, 2-D resistivity imaging, and induced pol...

Full description

Saved in:
Bibliographic Details
Main Author: Samsudin, Nuraisyah
Format: Thesis
Language:English
Published: 2023
Subjects:
Online Access:http://eprints.usm.my/60690/1/NURAISYAH%20BINTI%20SAMSUDIN%20-%20TESIS24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.60690
record_format uketd_dc
spelling my-usm-ep.606902024-06-04T08:59:20Z Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods 2023-09 Samsudin, Nuraisyah QC1 Physics (General) In regions renowned for geothermal activity, the presence and characteristics of hot springs are intricately linked to underlying geological discontinuities, primarily faults, fractures, and shear zones. This study harnesses the prowess of ground magnetic, 2-D resistivity imaging, and induced polarization methods to discern these deep-seated geological structures, which significantly influence the distribution and properties of hot springs. The methods applied provided nuanced insights into the subsurface, mapping the intricate interplay between faults and the resultant geothermal manifestations. Specifically, ground magnetic and 2-D resistivity imaging were employed to trace the trajectory of these faults in the heart of geothermal zones, enhancing the fidelity of existing geological representations and pinpointing potential geothermal surfaces. Such detailed analyses are pivotal, especially when evaluating the depth of magnetic anomalies which symbolize these vital structural underpinnings. Induced polarization emerged as a critical tool, effectively differentiating between geothermal mud (clay) and groundwater, a distinction often blurred when solely relying on 2-D resistivity imaging. Three geothermal hotbeds were the focal points of this research: Lojing Highlands in Kelantan, Manong in Perak, and Ladang Kombok in Negeri Sembilan. In the Lojing Highlands, magnetic residuals unveiled a fault line trending NE-SW, marked by contrasts ranging from 10 nT to 120 nT. Manong's geological fabric similarly exhibited a NE-SW trending fault, with magnetic nuances spanning from 10 nT to 120 nT. 2023-09 Thesis http://eprints.usm.my/60690/ http://eprints.usm.my/60690/1/NURAISYAH%20BINTI%20SAMSUDIN%20-%20TESIS24.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Fizik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QC1 Physics (General)
spellingShingle QC1 Physics (General)
Samsudin, Nuraisyah
Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods
description In regions renowned for geothermal activity, the presence and characteristics of hot springs are intricately linked to underlying geological discontinuities, primarily faults, fractures, and shear zones. This study harnesses the prowess of ground magnetic, 2-D resistivity imaging, and induced polarization methods to discern these deep-seated geological structures, which significantly influence the distribution and properties of hot springs. The methods applied provided nuanced insights into the subsurface, mapping the intricate interplay between faults and the resultant geothermal manifestations. Specifically, ground magnetic and 2-D resistivity imaging were employed to trace the trajectory of these faults in the heart of geothermal zones, enhancing the fidelity of existing geological representations and pinpointing potential geothermal surfaces. Such detailed analyses are pivotal, especially when evaluating the depth of magnetic anomalies which symbolize these vital structural underpinnings. Induced polarization emerged as a critical tool, effectively differentiating between geothermal mud (clay) and groundwater, a distinction often blurred when solely relying on 2-D resistivity imaging. Three geothermal hotbeds were the focal points of this research: Lojing Highlands in Kelantan, Manong in Perak, and Ladang Kombok in Negeri Sembilan. In the Lojing Highlands, magnetic residuals unveiled a fault line trending NE-SW, marked by contrasts ranging from 10 nT to 120 nT. Manong's geological fabric similarly exhibited a NE-SW trending fault, with magnetic nuances spanning from 10 nT to 120 nT.
format Thesis
qualification_level Master's degree
author Samsudin, Nuraisyah
author_facet Samsudin, Nuraisyah
author_sort Samsudin, Nuraisyah
title Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods
title_short Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods
title_full Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods
title_fullStr Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods
title_full_unstemmed Hot Springs Characterization In Peninsular Malaysia Using Integrated Geophysical Methods
title_sort hot springs characterization in peninsular malaysia using integrated geophysical methods
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Fizik
publishDate 2023
url http://eprints.usm.my/60690/1/NURAISYAH%20BINTI%20SAMSUDIN%20-%20TESIS24.pdf
_version_ 1804888986453278720