Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation

Butanol is a common chemical that used as an additive for automotive fuel. Among the production methods, the biobutanol synthesised through acetone-butanol-ethanol (ABE) fermentation process. The ABE fermentation using microalgae biomass that contains high carbohydrate with less lignin, which is sui...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Kean Meng
Format: Thesis
Language:English
Published: 2023
Subjects:
Online Access:http://eprints.usm.my/60791/1/TAN%20KEAN%20MENG%20-%20TESIS24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.60791
record_format uketd_dc
spelling my-usm-ep.607912024-07-04T03:58:10Z Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation 2023-09 Tan, Kean Meng T1-995 Technology(General) Butanol is a common chemical that used as an additive for automotive fuel. Among the production methods, the biobutanol synthesised through acetone-butanol-ethanol (ABE) fermentation process. The ABE fermentation using microalgae biomass that contains high carbohydrate with less lignin, which is suitable to be biobutanol feedstock. The potential of microalgae for biological CO2 biosequestration, making them value-added compared to other bioresources. In addition, the promising single-step saccharification and fermentation (SSF) process during ABE fermentation, has opened up a novel ground for advancement in economic biobutanol production. Based on this study, a total of two native acidophilic microalgae were successfully isolated and were identified as Coccomyxa dispar and Scenedesmus parvus strains. The C. dispar and S. parvus exhibited highest in terms of biomass productivity, carbohydrate productivity, and CO2 biofixation when cultivated under the elevated condition. Apart from that, the carbohydrate-related genes and proteins were also been investigated in this study. Based on the transcriptomic analysis, the results showed that a significant upregulated of carbohydrate-related genes such as AGB, SS, ISA, AGPase, ME, G6PD, Accc, RuBC, and CA that involved in C. dispar, while PGM, AGB, SS, AGPase, ME, DGAT, RuBC, and CA involved in S. parvus 2023-09 Thesis http://eprints.usm.my/60791/ http://eprints.usm.my/60791/1/TAN%20KEAN%20MENG%20-%20TESIS24.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Teknologi Industri
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic T1-995 Technology(General)
spellingShingle T1-995 Technology(General)
Tan, Kean Meng
Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation
description Butanol is a common chemical that used as an additive for automotive fuel. Among the production methods, the biobutanol synthesised through acetone-butanol-ethanol (ABE) fermentation process. The ABE fermentation using microalgae biomass that contains high carbohydrate with less lignin, which is suitable to be biobutanol feedstock. The potential of microalgae for biological CO2 biosequestration, making them value-added compared to other bioresources. In addition, the promising single-step saccharification and fermentation (SSF) process during ABE fermentation, has opened up a novel ground for advancement in economic biobutanol production. Based on this study, a total of two native acidophilic microalgae were successfully isolated and were identified as Coccomyxa dispar and Scenedesmus parvus strains. The C. dispar and S. parvus exhibited highest in terms of biomass productivity, carbohydrate productivity, and CO2 biofixation when cultivated under the elevated condition. Apart from that, the carbohydrate-related genes and proteins were also been investigated in this study. Based on the transcriptomic analysis, the results showed that a significant upregulated of carbohydrate-related genes such as AGB, SS, ISA, AGPase, ME, G6PD, Accc, RuBC, and CA that involved in C. dispar, while PGM, AGB, SS, AGPase, ME, DGAT, RuBC, and CA involved in S. parvus
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Tan, Kean Meng
author_facet Tan, Kean Meng
author_sort Tan, Kean Meng
title Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation
title_short Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation
title_full Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation
title_fullStr Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation
title_full_unstemmed Co2 Biofixation And Carbohydrate Biosynthesis By Locally Isolated Acidophilic Microalgae For Biobutanol Production Through Simultaneous Saccharification And Fermentation
title_sort co2 biofixation and carbohydrate biosynthesis by locally isolated acidophilic microalgae for biobutanol production through simultaneous saccharification and fermentation
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Teknologi Industri
publishDate 2023
url http://eprints.usm.my/60791/1/TAN%20KEAN%20MENG%20-%20TESIS24.pdf
_version_ 1804888997179162624