The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth

Interleukin-17-A holds significant roles in osteogenic differentiation and bone remodelling mechanism. To date, limited studies describe the effects of small interfering RNA (siRNA) on the expression of IL-17A receptor (IL-17RA) and how the modulation influences the process of osteogenic differentia...

Full description

Saved in:
Bibliographic Details
Main Author: Aduni, Wan Khairunnisaa Wan Nor
Format: Thesis
Language:English
Published: 2024
Subjects:
Online Access:http://eprints.usm.my/61039/1/WAN%20KHAIRUNNISAA%20BINTI%20WAN%20NOR%20ADUNI-%20FINAL%20THESIS%20P-SKM001919%28R%29-E.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.61039
record_format uketd_dc
spelling my-usm-ep.610392024-10-13T02:55:57Z The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth 2024-05 Aduni, Wan Khairunnisaa Wan Nor R Medicine RA440-440.87 Study and teaching. Research Interleukin-17-A holds significant roles in osteogenic differentiation and bone remodelling mechanism. To date, limited studies describe the effects of small interfering RNA (siRNA) on the expression of IL-17A receptor (IL-17RA) and how the modulation influences the process of osteogenic differentiation. Thus, the present study was to evaluate the effects of siRNA-targeting-IL-17RA on the osteogenic differentiation and the expression levels of osteogenic markers in stem cells from human exfoliated deciduous teeth (SHED). SHED were cultured in complete Minimum Essential Medium α supplemented with osteogenic medium which consists of 50 µg/mL L-ascorbic acid, 10 mM β-glycerophosphate, and 100 nM dexamethasone to induce osteogenic differentiation in SHED for 7 and 14 days. Differentiated SHED were cultured into two conditions: Group 1was treated with optimized concentration of IL- 17A (50 ng/mL) and Group 2 was treated with IL-17A and transfected with optimized concentration of siRNA-targeting-IL-17RA (50 nM) for 48 hours. Mineralisation activity by Alizarin red staining was performed on day 14 and day 21. The effects of siRNA were evaluated by measuring the expression levels of osteogenic markers such as ALP, OPG, RANKL, COL1A1, and RUNX2 by qPCR after 7 and 14 days. Untreated SHED were characterised by positively stained for stem cell markers such as CD90, CD73, and CD105 and were negatively stained for hematopoietic cell marker CD14. Differentiated-SHED showed significant expressions of ALP, COL1A1, and RUNX2 on day 7 and day 14 of differentiation. Staining of IL-17A-treated-SHED by Alizarin red demonstrated an increased calcium deposition compared to untreated SHED. Similarly, the expressions of ALP, OPG, COL1A1, and RUNX2 were significantly upregulated in IL-17A-treated SHED. However, RANKL expression was downregulated. Interestingly, siRNA- transfected SHED showed significant downregulation of ALP, OPG, COL1A1, and RUNX2 while RANKL was upregulated. These findings demonstrate that IL-17A enhances osteogenesis by promoting osteogenic differentiation and that siRNA- targeting-IL-17RA had interfered with the functions of IL-17A/IL-17RA, thus suggesting the importance of IL-17A in mediating the physiological mechanism of bone metabolism. 2024-05 Thesis http://eprints.usm.my/61039/ http://eprints.usm.my/61039/1/WAN%20KHAIRUNNISAA%20BINTI%20WAN%20NOR%20ADUNI-%20FINAL%20THESIS%20P-SKM001919%28R%29-E.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Pergigian
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic R Medicine
R Medicine
spellingShingle R Medicine
R Medicine
Aduni, Wan Khairunnisaa Wan Nor
The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
description Interleukin-17-A holds significant roles in osteogenic differentiation and bone remodelling mechanism. To date, limited studies describe the effects of small interfering RNA (siRNA) on the expression of IL-17A receptor (IL-17RA) and how the modulation influences the process of osteogenic differentiation. Thus, the present study was to evaluate the effects of siRNA-targeting-IL-17RA on the osteogenic differentiation and the expression levels of osteogenic markers in stem cells from human exfoliated deciduous teeth (SHED). SHED were cultured in complete Minimum Essential Medium α supplemented with osteogenic medium which consists of 50 µg/mL L-ascorbic acid, 10 mM β-glycerophosphate, and 100 nM dexamethasone to induce osteogenic differentiation in SHED for 7 and 14 days. Differentiated SHED were cultured into two conditions: Group 1was treated with optimized concentration of IL- 17A (50 ng/mL) and Group 2 was treated with IL-17A and transfected with optimized concentration of siRNA-targeting-IL-17RA (50 nM) for 48 hours. Mineralisation activity by Alizarin red staining was performed on day 14 and day 21. The effects of siRNA were evaluated by measuring the expression levels of osteogenic markers such as ALP, OPG, RANKL, COL1A1, and RUNX2 by qPCR after 7 and 14 days. Untreated SHED were characterised by positively stained for stem cell markers such as CD90, CD73, and CD105 and were negatively stained for hematopoietic cell marker CD14. Differentiated-SHED showed significant expressions of ALP, COL1A1, and RUNX2 on day 7 and day 14 of differentiation. Staining of IL-17A-treated-SHED by Alizarin red demonstrated an increased calcium deposition compared to untreated SHED. Similarly, the expressions of ALP, OPG, COL1A1, and RUNX2 were significantly upregulated in IL-17A-treated SHED. However, RANKL expression was downregulated. Interestingly, siRNA- transfected SHED showed significant downregulation of ALP, OPG, COL1A1, and RUNX2 while RANKL was upregulated. These findings demonstrate that IL-17A enhances osteogenesis by promoting osteogenic differentiation and that siRNA- targeting-IL-17RA had interfered with the functions of IL-17A/IL-17RA, thus suggesting the importance of IL-17A in mediating the physiological mechanism of bone metabolism.
format Thesis
qualification_level Master's degree
author Aduni, Wan Khairunnisaa Wan Nor
author_facet Aduni, Wan Khairunnisaa Wan Nor
author_sort Aduni, Wan Khairunnisaa Wan Nor
title The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
title_short The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
title_full The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
title_fullStr The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
title_full_unstemmed The effects of sirna-targeting IL-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
title_sort effects of sirna-targeting il-17a receptor in regulating the osteogenic differentiation in stem cells from human exfoliated deciduous teeth
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Pergigian
publishDate 2024
url http://eprints.usm.my/61039/1/WAN%20KHAIRUNNISAA%20BINTI%20WAN%20NOR%20ADUNI-%20FINAL%20THESIS%20P-SKM001919%28R%29-E.pdf
_version_ 1818647369869164544