Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique
Carbon nanotubes (CNTs) are nanoscale materials with diameters of few nanometer and length up to several tens of microns. They have been widely used in various industrial applications such as energy storage devices, solar cell application and reinforcement for polymer composites. CNTs are commonly g...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.utem.edu.my/id/eprint/16809/1/Parameteric%20Study%20Of%20Aligned%20Carbon%20Nanotube%20Growth%20Using%20Alcohol%20Catalytic%20Chemical%20Vapor%20Deposition%20Technique.pdf http://eprints.utem.edu.my/id/eprint/16809/2/Parameteric%20study%20of%20aligned%20carbon%20nanotube%20growth%20using%20alcohol%20catalytic%20chemical%20vapor%20deposition%20technique.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-utem-ep.16809 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Teknikal Malaysia Melaka |
collection |
UTeM Repository |
language |
English English |
advisor |
Abdullah, Ab Rahim |
topic |
T Technology (General) T Technology (General) |
spellingShingle |
T Technology (General) T Technology (General) Bistamam, Mohd Shahril Amin Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
description |
Carbon nanotubes (CNTs) are nanoscale materials with diameters of few nanometer and length up to several tens of microns. They have been widely used in various industrial applications such as energy storage devices, solar cell application and reinforcement for polymer composites. CNTs are commonly grown using catalytic chemical vapor deposition (CVD) technique. However, until now only few attempts have been made to study CNTs growth with detailed parameters on the growth of CNT alignment using alcohol as carbon feedstock. Thus, the main objective of this research is to further the study on the growth of aligned CNTs (A-CNTs) employing the said technique. A practical and high performance alcohol catalytic CVD (AC-CVD) system has been modified aimed at increasing the quality of gas flow which allows a greater amount of A-CNTs to be produced. The higher quality of gas flow could be produced through a unique shower ring gas supply located above the sample holder that could enhance the growth rate of A-CNTs. The radio frequency magnetron sputtering deposition technique was performed to prepare a substrate-supported catalyst. This consisting of silicon wafer substrate with 300 nm thick silicon oxide layer sputtered with aluminum as catalyst support and cobalt as catalyst with thickness of around 25 nm and below 10nm, respectively, were used to grow A-CNTs. Ethanol (C2H5OH) and argon (Ar) gas were used as CNT precursor and carrier gas, respectively. The AC-CVD processing temperature and time were varied at 700, 725, 750, 775, 800 °C and 3, 5, 7, 10, 15, 30 minutes, respectively, while other parameters were fixed. These parameters were chosen because 700 to 800 °C is the temperature range for CNT growth. Meanwhile, narrow initial time for AC-CVD processing time is due to the highly reactive growth of CNT at time under 10 minutes. The AC-CVD technique successfully produced CNTs with good alignment, high yield, and large area growth with improved controlling of the CNTs characteristics and morphologies. The CNT characterizations study were carried out using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), as well as Raman spectroscopy. The best AC-CVD processing temperature and time were found to be at 725 °C and 10 minutes. The as-grown CNTs over various AC-CVD processing temperature and time showed high degree of graphitization, purity and density. The CNTs grown over cobalt catalyst on the silicon wafer substrate are according to the tip-growth mechanism. |
format |
Thesis |
qualification_name |
Master of Philosophy (M.Phil.) |
qualification_level |
Master's degree |
author |
Bistamam, Mohd Shahril Amin |
author_facet |
Bistamam, Mohd Shahril Amin |
author_sort |
Bistamam, Mohd Shahril Amin |
title |
Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
title_short |
Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
title_full |
Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
title_fullStr |
Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
title_full_unstemmed |
Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
title_sort |
parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique |
granting_institution |
Universiti Teknikal Malaysia Melaka |
granting_department |
Faculty of Manufacturing Engineering |
publishDate |
2015 |
url |
http://eprints.utem.edu.my/id/eprint/16809/1/Parameteric%20Study%20Of%20Aligned%20Carbon%20Nanotube%20Growth%20Using%20Alcohol%20Catalytic%20Chemical%20Vapor%20Deposition%20Technique.pdf http://eprints.utem.edu.my/id/eprint/16809/2/Parameteric%20study%20of%20aligned%20carbon%20nanotube%20growth%20using%20alcohol%20catalytic%20chemical%20vapor%20deposition%20technique.pdf |
_version_ |
1747833893783863296 |
spelling |
my-utem-ep.168092022-05-17T10:53:40Z Parameteric study of aligned carbon nanotube growth using alcohol catalytic chemical vapor deposition technique 2015 Bistamam, Mohd Shahril Amin T Technology (General) TA Engineering (General). Civil engineering (General) Carbon nanotubes (CNTs) are nanoscale materials with diameters of few nanometer and length up to several tens of microns. They have been widely used in various industrial applications such as energy storage devices, solar cell application and reinforcement for polymer composites. CNTs are commonly grown using catalytic chemical vapor deposition (CVD) technique. However, until now only few attempts have been made to study CNTs growth with detailed parameters on the growth of CNT alignment using alcohol as carbon feedstock. Thus, the main objective of this research is to further the study on the growth of aligned CNTs (A-CNTs) employing the said technique. A practical and high performance alcohol catalytic CVD (AC-CVD) system has been modified aimed at increasing the quality of gas flow which allows a greater amount of A-CNTs to be produced. The higher quality of gas flow could be produced through a unique shower ring gas supply located above the sample holder that could enhance the growth rate of A-CNTs. The radio frequency magnetron sputtering deposition technique was performed to prepare a substrate-supported catalyst. This consisting of silicon wafer substrate with 300 nm thick silicon oxide layer sputtered with aluminum as catalyst support and cobalt as catalyst with thickness of around 25 nm and below 10nm, respectively, were used to grow A-CNTs. Ethanol (C2H5OH) and argon (Ar) gas were used as CNT precursor and carrier gas, respectively. The AC-CVD processing temperature and time were varied at 700, 725, 750, 775, 800 °C and 3, 5, 7, 10, 15, 30 minutes, respectively, while other parameters were fixed. These parameters were chosen because 700 to 800 °C is the temperature range for CNT growth. Meanwhile, narrow initial time for AC-CVD processing time is due to the highly reactive growth of CNT at time under 10 minutes. The AC-CVD technique successfully produced CNTs with good alignment, high yield, and large area growth with improved controlling of the CNTs characteristics and morphologies. The CNT characterizations study were carried out using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), as well as Raman spectroscopy. The best AC-CVD processing temperature and time were found to be at 725 °C and 10 minutes. The as-grown CNTs over various AC-CVD processing temperature and time showed high degree of graphitization, purity and density. The CNTs grown over cobalt catalyst on the silicon wafer substrate are according to the tip-growth mechanism. 2015 Thesis http://eprints.utem.edu.my/id/eprint/16809/ http://eprints.utem.edu.my/id/eprint/16809/1/Parameteric%20Study%20Of%20Aligned%20Carbon%20Nanotube%20Growth%20Using%20Alcohol%20Catalytic%20Chemical%20Vapor%20Deposition%20Technique.pdf text en public http://eprints.utem.edu.my/id/eprint/16809/2/Parameteric%20study%20of%20aligned%20carbon%20nanotube%20growth%20using%20alcohol%20catalytic%20chemical%20vapor%20deposition%20technique.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=96020 mphil masters Universiti Teknikal Malaysia Melaka Faculty of Manufacturing Engineering Abdullah, Ab Rahim 1. Aliev, A.E., Guthy, C., Zhang, M., Fang, S., Zakhidov, A.A., Fischer, J.E., and Baughman, R.H., 2007. Thermal transport in MWCNT sheets and yarns. Carbon, 45 (15), pp.2880-2888. 2. Amama, P.B., Pint, C.L., Kim, S.M., McJilton, L., Eyink, K.G., Stach, E.A., Hauge, R.H., and Maruyama, B., 2010. Influence of alumina type on the evolution and activity of aluminasupported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano, 4 (2), pp. 895-904 3. Azam, M.A., Mohamed, M.A., Shikoh, E., and Fujiwara, A., 2010. Thermal degradation of single-walled carbon nanotubes during alcohol catalytic chemical vapor deposition process. Japanese Journal of Applied Physics, 49 (2S), pp. 02BA04. 4. Azam, M.A., Fujiwara, A., Shimoda, T., 2011. Thermally oxidized aluminum as catalystsupport layer for vertically aligned single-walled carbon nanotube growth using ethanol. Applied Surface Science, 258 (2), pp.873-882. 5. Azam, M.A., Manaf, N.S.A., Talib, E., and Bistamam, M.S.A., 2013. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics, 19 (11), pp.145-1476. 6. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J., 1972. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. Journal of Catalysis, 26 (1), pp.51-62. 7. Baker, R.T.K., Harris, P.S., Thomas, R.B., and Waite, R.J., 1973. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. Journal of Catalysis, 30 (1), pp.86-95. 8. Benoit, J.M., Buisson, J.P., Chauvet, O., Godon, C., and Lefrant, S., 2002. Low-frequency Raman studies of multiwalled carbon nanotubes: Experiments and theory. Physical Review B, 66 (7), pp. 073417. 9. Bethune, D.S., Kiang, C.H., Vries, M.S.D., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R., 1993. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363 (6430), pp.605-607 10. Bistamam, M.S.A., Azam, M.A., Manaf, N.S.A., Goh, P.S., Rashid, M.W.A., Fauzi, A.F., 2014a. An overview of selected catalytic chemical vapor deposition parameter for aligned carbon nanotube growth. Nanoscience and Nanotechnology - Asia, 4 (1), pp. 2-30. 11. Bistamam, M.S.A., Azam, M.A., 2014b. Tip-growth of aligned carbon nanotubes on cobalt catalyst supported by alumina using alcohol catalytic chemical vapor deposition. Results in Physics, 4, 105-106. 12. Caglar, B., 2010. Production of carbon nanotubes by PECVD and their applications to supercapacitors. Unpublished online master dissertation, University of Barcelona, Spain 13. Ceah, C.M., Chai, S.P., and Mohamed, A.R., 2011. Synthesis of aligned carbon nanotubes. Carbon, 49 (14), pp. 4613-4635. 14. Cheng, H.M., Li, S.F., Pan, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S., 1998. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Applied Physics Letters, 72 (25), pp. 3282-3284. 15. Cheung, C.L., Kurtz, A., Park, H., and Lieber, C.M., 2002. Diameter-controlled synthesis of carbon nanotubes. Journal of Physical Chemistry B, 106 (10), pp. 2429-2433. 16. Choi, H.C., Kundaria, S., Wang, D., Javey, A., Wang, Q., Rolandi, M., and Dai, H., 2003. Efficient formation of iron nanoparticle catalysts on silicon oxide by hydroxylamine for carbon nanotube synthesis and electronics. Nano Letters, 3 (2), pp. 157-161. 17. Daenen, M., de Fouw, R.D., Hamers, B., Janssen, P.G.A., Schouteden, K. and Veld, M.A.J., 2003. The Wondrous World of Carbon Nanotubes, 1st ed., Eindhoven University of Technology. 18. Danafar, F., Razi, A.F., Salleh, A.R.M., and Biak, D.R.A., 2009. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes - A review. Chemical Engineer Journal, 155 (1-2), pp. 37-48 19. Delzeit, L., Chen, B., Cassell, A., Stevens, R., Nguyen, C., and Meyyappan, M., 2001. Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chemical Physics Letters, 348 (5-6), pp. 368-374. 20. Dijon, J., Szkutnik, P.D., Fournier, A., de Monsabert, T.G., Okuno, H., Quesnel, E., Muffato, V., Vito, E.D., Bendiab, N., Bogner, A., and Bernier, N., 2010. How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition. Carbon, 48 (13), pp. 3953-3963. 21. Dresselhaus, M.S., Dresselhaus, G. and Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33(7), pp.883-891 22. Dresselhaus, M.S., Dresselhaus, G., Saito, R, and Jorio, A., 2005. Raman spectroscopy of carbon nanotubes. Physics Reports, 409 (2), pp. 47-99 23. Dupuis, A.C., 2005. The catalyst in the CCVD of carbon nanotubes - A review. Progress in Materials Science, 50 (8), pp. 929-961. 24. Einarsson, E., Murakami, Y., Kadowaki, M., and Maruyama, S., 2008. Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon, 46 (6), pp.923-930. 25. Eres, G., Kinkhabwala, A.A., Cui, H., Geohegan, D.B., Puretzky, A.A., and Lowndes, D.H., 2005. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. The Journal of Physical Chemistry B, 109 (35), pp. 16684-16694. 26. Fan, S., Liang, W., Dang, H., Franklin, N., Tombler, T., Chapline, M., and Dai, H., 2000. Carbon nanotube arrays on silicon substrates and their possible application. Physica E: Lowdimensional Systems and Nanostructures, 8 (2), pp. 179-183. 27. Garcia, E.J., Hart, A.J., Wardle, B.L., and Slocum, H., 2007. Fabrication and nanocompression testing of aligned carbon-nanotube–polymer nanocomposites. Advanced Materials, 19 (16), pp.2151-2156. 28. Garcia, E.J., Wardle, B.L., Hart, A.J., and Yamamoto, N., 2008. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Composites Science and Technology, 68 (9), pp.2034-2041. 29. Garg, R., Dutta, N.K., Choudhury, N.R., 2014. Work function engineering of graphene. Nanomaterials, 4 (2), pp.267-300. 30. Ge, L., Sethi, S., Ci, L., Ajayan, P.M., and Dhinojwala, A., 2007. Carbon nanotube-based synthetic gecko tapes. Proceeding of the National Academy of Sciences (PNAS) USA, 104 (26), pp.10792-10795. 31. Geohegan, D.B., Puretzky, A.A., Ivanov, I.N., Jesse, S., Eres, S., Eres, G., and Howe, J.Y., 2003. In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Applied Physics Letters, 83 (9), pp.1851- 1853. 32. Gohier, A., Ewels, C.P., Minea, T.M., and Djouadi M.A., 2008. Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 46 (10), pp. 1331-1338. 33. Gruneis, A., Rummeli, M.H., Kramberger, C., Barreiro, A., Pichler, T., Pfeiffer, R., Kuzmany, H., Gemming, T., and Buchner, B., 2006. High quality double wall carbon nanotubes with a defined diameter distribution by chemical vapor deposition from alcohol. Carbon, 44 (15), pp.3177-3182. 34. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R. E., 1995. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 243 (1-2), pp.49-54. 35. Hafner, J.H., Cheung, C.L., Oosterkamp, T.H., and Lieber, C.M., 2001. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. Journal of Physical Chemistry B, 105 (4), pp. 743-746. 36. Han, J.H., Graff, R.A., Welch, B., Marsh, C.P., Franks, R., and Strano, M.S., 2008. A mechanochemical model of growth termination in vertical carbon nanotube forests. ACS Nano, 2 (1), pp.53-60. 37. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., 2004. Waterassisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306 (5700), pp.1362-1364. 38. Hayamizu, Y., Yamada, T., Mizuno, K., Davis, R.C., Futaba, D.N., Yumura, M., and Hata, K., 2008. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nature Nanotechnology, 3 (5), pp.289-294 39. He, C., Zhao, N., Shi, C., Du, X., and Li J., 2006. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Materials Chemistry and Physics, 97 (1), pp. 109-115. 40. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., and Bakajin, O., 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312 (5776), pp.1034-1037. 41. Homma, Y., Kobayashi, Y., Ogino, T., Takagi, D., Ito, R., Jung, Y.J., and Ajayan, P.M., 2003. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. Journal of Physical Chemistry B, 107 (44), pp. 12161-12164 42. Hongo, H., Nihey, F., Ichihashi, T., Ochiai, Y., Yudasaka, M., and Iijima, S., 2003. Support materials based on converted aluminum films for chemical vapor deposition growth of singlewall carbon nanotubes. Chemical Physics Letters, 380 (1-2), pp. 158-164. 43. Huang, H., Liu, C.H., Wu, Y., and Fan, S., 2005. Aligned carbon nanotube composite films for thermal management. Advanced Materials, 17 (13), pp.1652-1656. 44. Huang, L., White, B., Sfeir, M.Y., Huang, M., Huang, H.X., Wind, S., Hone, J., and O'Brien, S., 2006. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 110 (23), pp.11103-11109. 45. Hummer, G., Rasaiah, J.C., and Noworyta, J.P., 2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414 (6860), pp.188-190. 46. Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354 (6348), pp.56-58. Iijima, S., and Ichihashi, T., 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363 (6430), pp.603-605. 47. Iijima, S., Masako, Y., and Fumiyaki, N., 2007. Carbon nanotube technology. Nec Technical Journal, 2 (1), pp.52-56. 48. Izak, T., Danis, t., Vesely, M., Marton, M., and Michalka, M., 2007. Influence of co-catalyst on growth of carbon nanotubes using alcohol catalytic CVD method. Vacuum, 82 (2), pp.134- 137. 49. Jariwala, D., Sangwa, V.K., Lauhon, L.J., Marks, T.J., and Hersam, M.C., 2013. Carbon nanomaterials for electronics, optoelectornics, photovoltaics, and sensing. Chemical Society Reviews, 42 (7), pp.2824-2860. 50. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H., 2003. Ballistic carbon nanotube field-effect transistors. Nature, 424 (6949), pp. 654-657. 51. Jiang, K., Li, Q., and Fan, S., 2002. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature, 419 (6909), pp.801. 52. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus G., and Dresselhaus M.S., 2001. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Physical Review Letters, 86 (6), pp. 1118 53. Jourdain, V., and Bichara, C., 2013. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon, 58, pp. 2-39. 54. Kalra, A., Garde, S., and Hummer, G., 2003. Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences (PNAS) USA, 100 (18), pp.10175-10180. 55. Kim, W., Choi, H.C., Shim, M., Li, Y., Wang, D., and Dai, H., 2002. Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Letters, 2 (7), pp. 703-708. 56. Kimura, Y., Numasawa, T., Nihei, M., and Niwano, M., 2007. Infrared reflection absorption spectroscopy investigation of carbon nanotube growth on cobalt catalyst surfaces. Applied Physics Letters, 90 (7), pp. 073109. 57. Kohno, M., Orii, T., Hirasawa, M., Seto, T., Murakami, Y., Chiashi, S., Miyauchi, Y., and Maruyama, S., 2004. Growth of single-walled carbon nanotubes from size-selected catalytic metal particles. Applied Physics A, 79 (4-6), pp. 787-790. 58. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E., 1985. C60: Buckminsterfullerene. Nature, 318 (6042), pp.162-163. 59. Kukovecz, A., Konya, Z., Nagaraju, N., Willems, I., Tamasi, A., Fonseca, A., Nagy, J.B., and Kiricsi, I., 2000. Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas. Physical Chemistry Chemical Physics, 2 (13), pp. 3071-3076. 60. Kumar, M., and Ando, Y., 2010. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 10 (6), pp.3739-3758. 61. Li, X., Cao, A., Jung, Y.J., Vajtai, R., and Ajayan, P.M., 2005. Bottom-up growth of carbon nanotube multilayers: Unprecedented growth. Nano Letters, 5 (10), pp.1997-2000. 62. Liao, H., and Hafner, J.H., 2004. Low-temperature single-wall carbon nanotube synthesis by thermal chemical vapor deposition. Journal of Physical Chemistry B, 108 (22), pp. 6941-6943 63. Liu, K., Jiang, K., Feng, chen., Chen, Z., and Fan, S., 2005. A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon, 43 (14), pp.2850-2856. 64. Liu, H., Takagi, D., Ohno, H., Chiashi, S., Chokan, T., and Homma, Y., 2008. Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition. Applied Physics Express, 1 (1), pp.014001. 65. Liu, K., Sun, Y., Chen, L., Feng, C., Feng, X., Jiang, K., Zhao, Y., and Fan, S., 2008. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Letters, 8 (2), pp.700-705. 66. Liu, Z., Li, X., Tabakman, S.M., Jiang, K., Fan, S., and Dai, H., 2008. Multiplexed multi-color raman imaging of live cells with isotopically modified single walled carbon nanotubes. Journal of the American Chemical Society, 130 (41), pp.13540-13541. 67. Lu, F.L., and Ting, J.M., 2013. Very rapid growth of aligned carbon nanotubes on metallic substrates. Acta Materialia, 61 (6), pp. 2148-2153. 68. Madani, S.Y., Mandel, A., and Seifalian, A.M., 2013. A concise review of carbon nanotube's toxicology. Nano Reviews, 4, pp.21521. 69. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M., 2002. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 360 (3-4), pp.229-234. 70. Maruyama, S., Einarsson, E., Murakami, Y., and Edamura, T., 2005. Growth process of vertically aligned single-walled carbon nanotubes. Chemical Physics Letters, 403 (4-6), pp.320-323. 71. McDonough, J.K., and Gogotsi, Y., 2013. Carbon onions: Synthesis and electrochemical applications. The Electrochemical Society Interface, 22 (3), pp. 61-65. 72. Meshot, E.R., and Hart, A.J., 2008. Abrupt self-termination of vertically aligned carbon nanotube growth. Applied Physics Letters, 92 (11), pp.113107 73. Mizuno, K., Hata, K., Saito, T., Ohshima, S., Yumura, M., and Iijima, S., 2005. Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates. Journal of Physical Chemistry B, 109 (7), pp. 2632-2637. 74. Moisala, A., Li, Q., Kinloch, I.A., and Windle, A.H., 2006. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Composites Science and Technology, 66 (10), pp.1285-1288. 75. Murakami, Y., Miyauchi, Y., Chiashi, S., and Maruyama, S., 2003a. Direct synthesis of highquality single-walled carbon nanotubes on silicon and quartz substrates. Chemical Physics Letters, 377 (1-2), pp.49-54. 76. Murakami, Y., Miyauchi, Y., Chiashi, S., and Maruyama, S., 2003b. Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chemical Physics Letters, 374 (1-2), pp.53-58. 77. Murakami, Y., Chiashi, S., Miyauchi, Y., and Maruyama, S., 2004a. Direct synthesis of single-walled carbon nanotubes on silicon and quartz-based systems. Japanese Journal of Applied Physics, 43 (3), pp. 1221-1226. 78. Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., 2004b. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chemical Physics Letters, 385 (3-4), pp.298-303. 79. Murakami, Y., Chiashi, S., Einarsson, E., and Maruyama, S., 2005a. Polarization dependence of resonant Raman scattering from vertically aligned single-walled carbon nanotube films. Physical Review B, 71 (8), pp.085403. 80. Murakami, Y., Einarsson, E., Edamura, T., and Maruyama, S., 2005b. Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology, Carbon, 43 (13), pp.2664-2676. 81. Murakami, Y., Einarsson, E., Edamura, T., and Maruyama, S., 2005c. Polarization dependence of the optical absorption of single-walled carbon nanotubes. Physical Review Letters, 94 (8), pp.087402. 82. Murakami, T., Hasebe, Y., Kisoda, K., Nishio, K., Isshiki, T., and Harima, H., 2008. Effective catalyst on SiO2 in ethanol CVD for growth of single-walled carbon nanotubes. Diamond and Related Materials, 17 (7-10), pp. 1467-1470. 83. Noda, S., Hasegawa, K., Sugime, H., Kakehi, K., Zhang, Z., Maruyama, S., and Yamaguchi, Y., 2007. Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support, Japanese Journal of Applied Physics, 46 (17-19), pp.L399. 84. Oberlin, A., Endo, M., and Koyama, T., 1976. Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32 (3), p.p335-349. 85. O'Connel, M.J., 2006. Carbon Nanotubes: Properties and Applications, Florida: Taylor and Francis Group. Odom, T.W., Huang, J.L., Kim, P., and Lieber, C., 1998. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391 (6662), pp.62-64. 86. Ohno, Y., Iwatsuki, S., Hiraoka, T., Okazaki, T., Kishimoto, S., Maezawa, K., Shinohara, H., and Mizutani, T., 2003. Position-controlled carbon nanotube field-effect transistors fabricated by chemical vapor deposition using patterned metal catalyst. Japanese Journal of Applied Physics, 42 (6B), pp. 4116-4119. 87. Ohno, H., Takagi, D., Yamada, K., Chiashi, S., Tokura, A., and Homma, Y., 2008. Growth of vertically aligned single-walled carbon nanotubes on alumina and sapphire substrates. Japanese Journal of Applied Physics, 47 (4R), pp. 1956-1960. 88. Picher, M., Anglaret, E., Arenal, R., and Jourdain, V., 2009. Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements, Nano Letters, 9 (2), pp.542- 547. 89. Pint, C.L., Xu, Y.Q., Pasquali, M., and Hauge, R.H., 2008. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano, 2 (9), pp.1871-1878. 90. Puretzky, A.A., Geohegan, D.B., Jesse, s., Ivanov, I.N., and Eres, G., 2005. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Applied Physics A - Material Science and Processing, 81 (2), pp.223-240. 91. Qin, L.C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., and Iijima, S., 2000. Materials science: The smallest carbon nanotube. Nature, 408 (6808), pp. 50. 92. Qu, L., Dai, L.M., Stone, M., Xia, Z., and Wang Z.L., 2008. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 322 (5899), pp.238-242. 93. Rao, C.N.R., Muller, A., and Cheetham, A.K., 2005. The Chemistry of Nanomaterials: Syntehsis, properties and application, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. 94. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N., 1998. Synthesis of large arrays of well-aligned carbon nanotubes on Glass. Science, 282 (5391), pp.1105-1107. 95. Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., and Reed, M.A., 1999. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Applied Physics Letters, 75 (8), pp.1086-1088. 96. Ren, L., Pint, C.L., Booshehri, L.G., Rice, W.D., Wang, X., Hilton, D.J., Takeya, K., Kawayama, I., Tanouchi, M., Hauge, R.H., and Kono, J., 2009. Carbon nanotube terahertz polarizer. Nano Letters, 9 (7), pp.2610-2613. 97. Rummeli, M.H., Schaffel, F., Kramberger, C., Gemming, T., Bachmatiuk, A., Kalenczuk, R.J., Rellinghaus, B., Buchner, B., and Pichler, T., 2007. Oxide-driven carbon nanotube growth in supported catalyst CVD. Journal of American Chemical Society, 129 (51), pp. 15772-15773. 98. Sawada, S., and Hamada, N., 1992. Energetics of carbon nano-tubes. Solid State Communications, 83 (11), pp. 917-919. Sen, R., Govindaraj, A., and Rao, C.N.R., 1997. Carbon nanotubes by the metallocene route. Chemical Physics Letters, 267 (3-4), pp. 276-280. 99. Sethi, S., Ge, L., Ci, L., Ajayan, P.M., and Dhinojwala, A., 2008. Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Letters, 8 (3), pp.822-825. 100. Shibuta, Y., and Maruyama, S., 2003. Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chemical Physics Letters, 382 (3-4), pp.381-386. 101. Stadermann, M., Sherlock, S.P., In, J.B., Fornasiero, F., Park, H.G., Artyukhin, A.B., Wang, Y., Yoreo, J.J.D., Grigoropoulos, C.P., Bakajin, O., Chernov, A.A., and Noy, A., 2009. Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Letters, 9 (2), pp.738-744. 102. Sugime, H. and Noda, S., 2010. Millimeter-tall single-walled carbon nanotube forests grown from ethanol. Carbon, 48 (8), pp. 2203-2211. 103. Teng, F.Y., Ting, J.M., Sharma, S.P., and Liao, K.H., 2008. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates. Nanotechnology, 19 (9), pp. 095607. 104. Tu, J.P., Zhu, L.P., Hou, K., and Guo, S.Y., 2003. Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon, 41 (6), pp. 1257- 1263. 105. Unalan, H.E., and Chhowalla, M., 2005. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology, 16 (10), pp. 2153-2163. 106. Venema, L.C., Wildoer, J.W.G., Dekker, C., Rinzler, G.A., and Smalley, R.E., 1998. STM atomic resolution images of single-wall carbon nanotubes. Applied Physics A, 66 (1), pp.S153- S155. 107. Verweij, H., Schillo, M.C., and Li, J., 2007. Fast mass transport through carbon nanotube membranes. Small, 3 (12), pp.1996-2004. 108. Wal, R.L.V., Ticich, T.M., and Curtis, V.E., 2001. Substrate-support interactions in metalcatalyzed carbon nanofiber growth. Carbon, 39 (15), pp. 2277-2289. 109. Wang, X. and Han, G.R., 2003. Fabrication and characterization of anodic aluminum oxide template. Microelectronic Engineering, 66 (1-4), pp. 166-170. 110. Xiang, R., Luo, G., Qian, W., Zhang, Q., Wang, Y., Fei, W., Li, Q., and Cao, A., 2007. Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Advanced Materials, 19 (17), pp.2360-2363. 111. Xiao, L., Chen, Z., Feng, C., Liu, L., Bai, Z.Q., Wang, Y., Qian, L., Zhang, Y., Li, Q., Jiang K., and Fan, S., 2008. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Letters, 8 (12), pp.4539-4545. 112. Xu, Y.Q., Flor, E., Kim, M.J., Hamadani, B., Schmidt, H., Smalley, R.E., and Hauge, R.H., 2006. Vertical array growth of small diameter single-walled carbon nanotubes. Journal of American Chemical Society, 128 (20), pp.6560-6561. 113. Yamamoto, N., Hart, A.J., Garcia, E.J., Wicks, S.S., Duong, H.M., Slocum, A.H., and Wardle, B.L., 2009. High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon, 47 (3), pp.551-560. 114. Yao, N., Xiong, G., Zhang, Y., He, M., and Yang, W., 2001. Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method. Catalysis Today, 68 (1-3), pp. 97-109. 115. Yao, Y., Falk, L.K.L., Morjan, R.E., Nerushev, O.A., and Campbell, E.E.B., 2004. Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: The nanotube film. Journal of Materials Science: Materials in Electronics, 15 (9), pp. 583- 594. 116. Yurdumakan, B., Raravikar, N.R., Ajayan, P.M., and Dhinojwala, A., 2005. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chemical Communications, (30), pp.3799- 3801. 117. Zhang, M., Atkinson, K.R., and Baughman, R.H., 2004. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306 (5700), pp.1358-1361. 118. Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVitte, J.P., Nishi, Y., Gibbons, J., and Dai, H., 2005. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proceeding of the National Academy of Sciences (PNAS) USA, 102 (45), pp.16141-16145. 119. Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Wiliams, C.D., Atkinson, K.R., and Baughman, R.H., 2005. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309 (5738), pp.1215-1219. 120. Zhang, L., Tan, Y., and Resasco, D.E., 2006. Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of Co-Mo catalyst particles. Chemical Physics Letters, 422 (1-3), pp.198-203. 121. Zhang, L., Feng, C., Chen, Z., Liu, L., Jiang, K., Li, Q., and Fan S., 2008. Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Letters, 8 (8), pp.2564-2569. 122. Zhao. X., Ohkohchi, X., Wang, M., Iijima, S., Ichihashi, T., and Ando, Y., 1997. Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon, 35 (6), pp.775-781. 123. Zhao, X., Ando, Y., Qin, L.C., Kataura, H., Maniwa, Y., and Saito, R., 2002. Radial breathing modes of multiwalled carbon nanotubes. Chemical Physics Letters, 361 (1-2), pp. 169-174. 124. Zhao, Y., Yakobson, B.I., and Smalley, R.E., 2002. Dynamic topology of fullerene coalescence, Physical Review Letters, 88 (18), pp. 185501. 125. Zhao, Y., Tong, T., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A., 2006. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. Journal of Vacuum Science and Technology B, 24 (1), pp.331-335. 126. Zhong, G.F., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., and Kawarada, H., 2005. Very high yield growth of vertically aligned single-walled carbon nanotubes by point-arc microwave plasma CVD. Chemical Vapor Depostion, 11 (3), pp.127-130. 127. Zhu, L., Xiu, Y., Hess, D.W., and Wong, C.P., 2005. Aligned carbon nanotube stacks by water-assisted selective etching. Nano Letters, 5 (12), pp.2641-2645. |