Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance

In recent years, polymer nanocomposites have attracted great interest due to their remarkable improvements in materials properties when compared with virgin polymer or conventional micro and macro-composites. This research is an effort to explore the potential of graphene nanoplatelets (GNPs) filled...

Full description

Saved in:
Bibliographic Details
Main Author: Yaakub, Juliana
Format: Thesis
Language:English
English
Published: 2015
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/16826/1/Synthesis%20And%20Physico-Mechanical%20Analysis%20Of%20Graphene%20Nanoplatelets%20%28GNPs%29%20Filled%20Natural%20Rubber%2C%20Ethylene%20Propylene%20Diene%20Monomer%20%28NR-EPDM%29%20For%20Vibration%20Resistance.pdf
http://eprints.utem.edu.my/id/eprint/16826/2/Synthesis%20and%20physico-mechanical%20analysis%20of%20graphene%20nanoplatelets%20%28GNPs%29%20filled%20natural%20rubberethylene%20propylene%20diene%20monomer%20%28NR-EPDM%29%20for%20vibration%20resistance.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.16826
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Mohamad, Noraiham

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Yaakub, Juliana
Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance
description In recent years, polymer nanocomposites have attracted great interest due to their remarkable improvements in materials properties when compared with virgin polymer or conventional micro and macro-composites. This research is an effort to explore the potential of graphene nanoplatelets (GNPs) filled natural rubber/ethylene-propylene-diene rubber (NR/EPDM) as mount rubber based on their physico-mechanical and vibration damping properties. At stage 1, the effects of compatibilizer and processing parameters on the properties of NR/EPDM (70: 30 phr) blends were studied. The blends were prepared by melt compounding using Haake Internal Mixer. Using Response Surface Methodology (RSM) of two-level full factorial, the effects of epoxidized natural rubber, ENR-50 contents (-1:5 phr; +1:10 phr), mixing temperature (-1:50 °C; +1:110 °C), rotor speed (-1:40 rpm; +1: 80 rpm) and mixing time (-1:5 min; +1:9 min) in NR/EPDM blends were evaluated. Cure characteristics and tensile properties were selected as the responses. The coefficient of determination, R2 values above 0.90 were accurate to represent the actual system. The findings were further supported by swelling behaviour, thermal and morphological characteristics. At stage 2, a facile method for surface treatment of GNPs was demonstrated. In stage 3 and 4, the effects of unfunctionalized and functionalized GNPs loading (0, 0.25, 0.50, 1, 3 and 5 wt%) on cure characteristics, physico-mechanical, structural, vibration, thermal properties of the composites as well as on their morphologies were studied. The studies were carried out through Monsanto rheometer analysis, tensile test, swelling test, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibration test, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The GNPs show good compatibility with NR/EPDM matrix due to their improvement observed in cure characteristics, tensile properties and crosslink density compared with unfilled vulcanized NR/EPDM. It was in line with the observation on structural and chemical properties of GNPs dispersed in NR/EPDM matrix. XRD and FTIR pattern have provided sufficient explanation regarding the state of dispersion of GNPs filled NR/EPDM matrix. The morphology of the unfunctionalized and functionalized GNPs in the NR/EPDM matrix revealed uniform distribution of GNPs up to 3 wt% loading, whereas, GNPs agglomerates were observed at 5 wt%. The vibration test via free vibration test had proven the potential of GNPs filled NR/EPDM as mount rubber in which their amplitude decays faster than the vulcanized NR/EPDM. The storage modulus, loss modulus and tan δ showed good agreement with the vibrational damping behaviours. TEM analysis revealed the existence of intercalated and exfoliated structure of GNPs which resulted in improved vibration damping characteristics and mechanical properties. In overall, GNPs filled NR/EPDM are capable to absorb vibrational energy particularly for a mount rubber.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Yaakub, Juliana
author_facet Yaakub, Juliana
author_sort Yaakub, Juliana
title Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance
title_short Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance
title_full Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance
title_fullStr Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance
title_full_unstemmed Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance
title_sort synthesis and physico-mechanical analysis of graphene nanoplatelets (gnps) filled natural rubber/ethylene propylene diene monomer (nr/epdm) for vibration resistance
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Manufacturing Engineering
publishDate 2015
url http://eprints.utem.edu.my/id/eprint/16826/1/Synthesis%20And%20Physico-Mechanical%20Analysis%20Of%20Graphene%20Nanoplatelets%20%28GNPs%29%20Filled%20Natural%20Rubber%2C%20Ethylene%20Propylene%20Diene%20Monomer%20%28NR-EPDM%29%20For%20Vibration%20Resistance.pdf
http://eprints.utem.edu.my/id/eprint/16826/2/Synthesis%20and%20physico-mechanical%20analysis%20of%20graphene%20nanoplatelets%20%28GNPs%29%20filled%20natural%20rubberethylene%20propylene%20diene%20monomer%20%28NR-EPDM%29%20for%20vibration%20resistance.pdf
_version_ 1747833897887989760
spelling my-utem-ep.168262022-06-01T15:19:11Z Synthesis and physico-mechanical analysis of graphene nanoplatelets (GNPs) filled natural rubber/ethylene propylene diene monomer (NR/EPDM) for vibration resistance 2015 Yaakub, Juliana T Technology (General) TA Engineering (General). Civil engineering (General) In recent years, polymer nanocomposites have attracted great interest due to their remarkable improvements in materials properties when compared with virgin polymer or conventional micro and macro-composites. This research is an effort to explore the potential of graphene nanoplatelets (GNPs) filled natural rubber/ethylene-propylene-diene rubber (NR/EPDM) as mount rubber based on their physico-mechanical and vibration damping properties. At stage 1, the effects of compatibilizer and processing parameters on the properties of NR/EPDM (70: 30 phr) blends were studied. The blends were prepared by melt compounding using Haake Internal Mixer. Using Response Surface Methodology (RSM) of two-level full factorial, the effects of epoxidized natural rubber, ENR-50 contents (-1:5 phr; +1:10 phr), mixing temperature (-1:50 °C; +1:110 °C), rotor speed (-1:40 rpm; +1: 80 rpm) and mixing time (-1:5 min; +1:9 min) in NR/EPDM blends were evaluated. Cure characteristics and tensile properties were selected as the responses. The coefficient of determination, R2 values above 0.90 were accurate to represent the actual system. The findings were further supported by swelling behaviour, thermal and morphological characteristics. At stage 2, a facile method for surface treatment of GNPs was demonstrated. In stage 3 and 4, the effects of unfunctionalized and functionalized GNPs loading (0, 0.25, 0.50, 1, 3 and 5 wt%) on cure characteristics, physico-mechanical, structural, vibration, thermal properties of the composites as well as on their morphologies were studied. The studies were carried out through Monsanto rheometer analysis, tensile test, swelling test, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibration test, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The GNPs show good compatibility with NR/EPDM matrix due to their improvement observed in cure characteristics, tensile properties and crosslink density compared with unfilled vulcanized NR/EPDM. It was in line with the observation on structural and chemical properties of GNPs dispersed in NR/EPDM matrix. XRD and FTIR pattern have provided sufficient explanation regarding the state of dispersion of GNPs filled NR/EPDM matrix. The morphology of the unfunctionalized and functionalized GNPs in the NR/EPDM matrix revealed uniform distribution of GNPs up to 3 wt% loading, whereas, GNPs agglomerates were observed at 5 wt%. The vibration test via free vibration test had proven the potential of GNPs filled NR/EPDM as mount rubber in which their amplitude decays faster than the vulcanized NR/EPDM. The storage modulus, loss modulus and tan δ showed good agreement with the vibrational damping behaviours. TEM analysis revealed the existence of intercalated and exfoliated structure of GNPs which resulted in improved vibration damping characteristics and mechanical properties. In overall, GNPs filled NR/EPDM are capable to absorb vibrational energy particularly for a mount rubber. 2015 Thesis http://eprints.utem.edu.my/id/eprint/16826/ http://eprints.utem.edu.my/id/eprint/16826/1/Synthesis%20And%20Physico-Mechanical%20Analysis%20Of%20Graphene%20Nanoplatelets%20%28GNPs%29%20Filled%20Natural%20Rubber%2C%20Ethylene%20Propylene%20Diene%20Monomer%20%28NR-EPDM%29%20For%20Vibration%20Resistance.pdf text en public http://eprints.utem.edu.my/id/eprint/16826/2/Synthesis%20and%20physico-mechanical%20analysis%20of%20graphene%20nanoplatelets%20%28GNPs%29%20filled%20natural%20rubberethylene%20propylene%20diene%20monomer%20%28NR-EPDM%29%20for%20vibration%20resistance.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=96003 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Manufacturing Engineering Mohamad, Noraiham 1. Adams, R. and Maheri, M., 2003. Damping in Advanced Polymer–Matrix Composites. 2. Journal of alloys and compounds, 355 (1), pp.126-130. 3. Afifi, H. A. and El Sayed, A. M., 2003. Ultrasonic Properties of Enr-Epdm Rubber Blends. 4. Polymer bulletin, 50 (1-2), pp.115-122. 5. Akiba, M. and Hashim, A., 1997. Vulcanization and Crosslinking in Elastomers. Progress in Polymer Science, 22 (3), pp.475-521. 6. Alexandre, M. and Dubois, P., 2000. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Materials Science and Engineering: R: Reports, 28 (1), pp.1-63. 7. Alipour, A., Naderi, G. and Ghoreishy, M. H., 2013. Effect of Nanoclay Content and Matrix Composition on Properties and Stress–Strain Behavior of Nr/Epdm Nanocomposites. Journal of applied polymer science, 127 (2), pp.1275-1284. 8. Amin, A., Lion, A. and Höfer, P., 2010. Effect of Temperature History on the Mechanical 9. Behaviour of a Filler‐Reinforced Nr/Br Blend: Literature Review and Critical Experiments. 10. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte 11. Mathematik und Mechanik, 90 (5), pp.347-369. 12. Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y. and Ma, J., 2014. Electrically and Thermally Conductive Elastomer/Graphene Nanocomposites by Solution Mixing. Polymer, 55 (1), pp.201-210. 13. Araby, S., Zaman, I., Meng, Q., Kawashima, N., Michelmore, A., Kuan, H.-C., Majewski, P., Ma, J. and Zhang, L., 2013. Melt Compounding with Graphene to Develop Functional, High-Performance Elastomers. Nanotechnology, 24 (16), pp.165601. 14. Arayapranee, W., 2012. Rubber Abrasion Resistance. Abrasion resistance of materials. InTech. 15. Arayapranee, W. and Rempel, G., 2007. Properties of Nr/Epdm Blends with or without Methyl Methacrylate-Butadiene-Styrene (Mbs) as a Compatibilizer. Intern. J. Mater. Struct. Relia, 5, pp.1-12. 16. Arayapranee, W. and Rempel, G. L., 2008. A Comparative Study of the Cure Characteristics, Processability, Mechanical Properties, Ageing, and Morphology of Rice 17. Husk Ash, Silica and Carbon Black Filled 75: 25 Nr/Epdm Blends. Journal of applied polymer science, 109 (2), pp.932-941. 18. Arroyo, M., Lopez-Manchado, M., Valentin, J. and Carretero, J., 2007. Morphology/Behaviour Relationship of Nanocomposites Based on Natural Rubber/Epoxidized Natural Rubber Blends. Composites Science and Technology, 67 (7), pp.1330-1339. 19. Asaletha, R., Kumaran, M. and Thomas, S., 1998. Thermal Behaviour of Natural Rubber/Polystyrene Blends: Thermogravimetric and Differential Scanning Calorimetric Analysis. Polymer degradation and stability, 61 (3), pp.431-439. 20. Balazs, A. C., Emrick, T. and Russell, T. P., 2006. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 314 (5802), pp.1107-1110. 21. Barick, A. K., Jung, J. Y., Choi, M. C. and Chang, Y. W., 2013. Thermoplastic Vulcanizate Nanocomposites Based on Thermoplastic Polyurethane and Millable Polyurethane Blends Reinforced with Organoclay Prepared by Melt Intercalation Technique: Optimization of Processing Parameters Via Statistical Methods. Journal of applied polymer science, 129 (3), pp.1405-1416. 22. Barlow, F. W., 1993. Rubber Compounding: Principles, Materials, And. 23. Barroso-Bujans, F., Cerveny, S., Verdejo, R., del Val, J., Alberdi, J., Alegría, A. and Colmenero, J., 2010. Permanent Adsorption of Organic Solvents in Graphite Oxide and Its Effect on the Thermal Exfoliation. Carbon, 48 (4), pp.1079-1087. 24. Bauer, R. and Dudley, E., 1977. Compatibilization of Rubber Blends through Phase Interaction. Rubber Chemistry and Technology, 50 (1), pp.35-42. 25. Beards, C., 1996. Structural Vibration: Analysis and Damping, ed.: Butterworth- Heinemann. 26. Benyounis, K., Olabi, A. and Hashmi, M., 2005. Effect of Laser Welding Parameters on the Heat Input and Weld-Bead Profile. Journal of Materials Processing Technology, 164, pp.978-985. 27. Bhattacharya, A., Rawlins, J. W. and Ray, P., 2009. Polymer Grafting and Crosslinking, 28. ed.: Wiley Online Library. 29. Bhowmick, A. K. and Stephens, H., 2000. Handbook of Elastomers, ed.: CRC Press. 30. Bianco, A., 2013. Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie International Edition, 52 (19), pp.4986-4997. 31. Bokobza, L., 2009. Mechanical, Electrical and Spectroscopic Investigations of Carbon Nanotube-Reinforced Elastomers. Vibrational Spectroscopy, 51 (1), pp.52-59. 32. Bokobza, L. and Rapoport, O., 2002. Reinforcement of Natural Rubber. Journal of applied polymer science, 85 (11), pp.2301-2316. 33. Boonsong, K., Seadan, M. and Lopattananon, N., 2008. Compatibilization of Natural Rubber (Nr) and Chlorosulfonated Polyethylene (Csm) Blends with Zinc Salts of Sulfonated Natural Rubber. Songklanakarin Journal of Science & Technology, 30 (4). 34. Botros, S. and El Sayed, A. M., 2001. Swelling Behavior of Nr/Epdm Rubber Blends under Compression Strain. Journal of applied polymer science, 82 (12), pp.3052-3057. 35. Boudenne, A., Ibos, L., Candau, Y. and Thomas, S., 2011. Handbook of Multiphase Polymer Systems, ed.: Wiley Online Library. 36. Brinke, J. W., 2002. Silica Reinforced Tyre Rubbers: Mechanistic Aspects of the Role of Coupling Agents, ed.: Twente University Press. 37. Brown, R., 1999. Handbook of Polymer Testing: Physical Methods, ed.: CRC press. 38. Cantournet, S., Desmorat, R. and Besson, J., 2009. Mullins Effect and Cyclic Stress Softening of Filled Elastomers by Internal Sliding and Friction Thermodynamics Model. International Journal of Solids and Structures, 46 (11), pp.2255-2264. 39. Cesare, F. C. 1989. Elastomeric Composition Having Increased Ozone Resistance. Google Patents. 40. Chang, Y. W., Shin, Y. S., Chun, H. and Nah, C., 1999. Effects of Trans‐Polyoctylene Rubber (Tor) on the Properties of Nr/Epdm Blends. Journal of applied polymer science, 73 41. (5), pp.749-756. 42. Chapman, A., 2007. Natural Rubber and Nr-Based Polymers: Renewable Materials with Unique Properties. Transport, 5, pp.8. 43. Chatterjee, T. and Krishnamoorti, R., 2013. Rheology of Polymer Carbon Nanotubes Composites. Soft Matter, 9 (40), pp.9515-9529. 44. Chen, C., Zhai, W., Lu, D., Zhang, H. and Zheng, W., 2011. A Facile Method to Prepare Stable Noncovalent Functionalized Graphene Solution by Using Thionine. Materials Research Bulletin, 46 (4), pp.583-587. 45. Chiu, H.-T., Chiu, S.-H., Wu, J.-H. and Ger, G.-S., 2001. The Dynamic Properties of Rubber Vibration Isolators and Anti-Vibration Performance of Kevlar Fiber Reinforced Silicone Rubber/Polyurethane/Epoxy Blends. J. Mater. Sci. Eng, 33 (4), pp.200-208. 46. Choi, E.-Y., Han, T. H., Hong, J., Kim, J. E., Lee, S. H., Kim, H. W. and Kim, S. O., 2010. 47. Noncovalent Functionalization of Graphene with End-Functional Polymers. Journal of Materials Chemistry, 20 (10), pp.1907-1912. 48. Chung, D., 2001. Review: Materials for Vibration Damping. Journal of Materials Science, 49. 36 (24), pp.5733-5737. 50. Ciesielski, A., 1999. An Introduction to Rubber Technology, ed.: iSmithers Rapra Publishing. 51. Coleman, J. N., 2009. Liquid‐Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 19 (23), pp.3680-3695. 52. Copuroğlu, M. and Şen, M., 2005. A Comparative Study of Uv Aging Characteristics of 53. Poly (Ethylene‐Co‐Vinyl Acetate) and Poly (Ethylene‐Co‐Vinyl Acetate)/Carbon Black Mixture. Polymers for advanced technologies, 16 (1), pp.61-66. 54. Corsaro, R. D. and Sperling, L. H., 1990. Sound and Vibration Damping with Polymers. 55. Da Silva Sirqueira, A. and Guenther Soares, B., 2007. Kinetic Analysis of Thermal Degradation of Nr/Epdm Blends: Effect of the Reactive Compatibilization. Journal of applied polymer science, 103 (4), pp.2669-2675. 56. Darsivan, F. J. and Martono, W., 2006. Engine Mounting Characteristic for Vibration Isolation and Active Vibration Control Strategies. 57. Davidson, I., Sumner, D. D. and Parker, J. C., 1982. Chloroform: A Review of Its Metabolism, Teratogenic, Mutagenic, and Carcinogenic Potential. Drug and chemical toxicology, 5 (1), pp.1-87. 58. De, S. K. and White, J. R., 2001. Rubber Technologist's Handbook, ed.: iSmithers Rapra Publishing. 59. Deshpande, R., Chinnan, M. and McWatters, K., 2008. Optimization of a Chocolate- Flavored, Peanut–Soy Beverage Using Response Surface Methodology (Rsm) as Applied to Consumer Acceptability Data. LWT-Food Science and technology, 41 (8), pp.1485-1492. 60. Devaux, J. and Demoustier-Champagne, S., 2008. Polymer Chemistry and Microstructure. 61. Comprehensive Analytical Chemistry, 53, pp.13-755. 62. Du, J. and Cheng, H. M., 2012. The Fabrication, Properties, and Uses of 63. Graphene/Polymer Composites. Macromolecular Chemistry and Physics, 213 (10‐11), pp.1060-1077. 64. Duguay, A., 2011. Exfoliated Graphite Nanoplatelet-Filled Impact Modified Polypropylene Nanocomposites. 65. Dutta, P. K., Dutta, J. and Tripathi, V., 2004. Chitin and Chitosan: Chemistry, Properties and Applications. Journal of Scientific and Industrial Research, 63 (1), pp.20-31. 66. El‐Sabbagh, S., 2003. Compatibility Study of Natural Rubber and Ethylene‐Propylene‐ Diene Rubber Blends. Journal of applied polymer science, 90 (1), pp.1-11. 67. Faiz, A., Petit, L., Guyomar, D. and Ducourneau, J., 2010. A New Adaptive Resonance Frequency of Piezoelectric Components Used for Vibration Damping. The Journal of the Acoustical Society of America, 127 (4), pp.EL134-EL139. 68. Fang, M., Long, J., Zhao, W., Wang, L. and Chen, G., 2010. Ph-Responsive Chitosan- Mediated Graphene Dispersions. Langmuir, 26 (22), pp.16771-16774. 69. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S., 2009. Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites. Journal of Materials Chemistry, 19 (38), pp.7098-7105. 70. Faravelli, L., 1989. Response-Surface Approach for Reliability Analysis. Journal of Engineering Mechanics, 115 (12), pp.2763-2781. 71. Fröhlich, J., Niedermeier, W. and Luginsland, H.-D., 2005. The Effect of Filler–Filler and Filler–Elastomer Interaction on Rubber Reinforcement. Composites Part A: Applied Science and Manufacturing, 36 (4), pp.449-460. 72. Fukushima, H., Drzal, L., Rook, B. and Rich, M., 2006. Thermal Conductivity of Exfoliated Graphite Nanocomposites. Journal of thermal analysis and calorimetry, 85 (1), pp.235-238. 73. Galimberti, M., 2011. Rubber-Clay Nanocomposites: Science, Technology, and Applications, ed.: John Wiley & Sons. 74. Ganguli, S., Roy, A. K. and Anderson, D. P., 2008. Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites. Carbon, 46 (5), pp.806-817. 75. Geethamma, V., Kalaprasad, G., Groeninckx, G. and Thomas, S., 2005. Dynamic Mechanical Behavior of Short Coir Fiber Reinforced Natural Rubber Composites. Composites Part A: Applied Science and Manufacturing, 36 (11), pp.1499-1506. 76. Geisberger, A. A., Khajepour, A. and Golnaraghi, M. F., 2000. Nonlinear Modeling and Experimental Verification of an Mdof Hydraulic Engine Mount. ASME-PUBLICATIONS- AD, 61, pp.95-100. 77. Gelling, I., 1987. Epoxidised Natural Rubber. NR Technol, 18, pp.21. 78. Gent, A. N., 2012. Engineering with Rubber: How to Design Rubber Components, ed.: Carl Hanser Verlag GmbH Co KG. 79. Ghasemi, I., Karrabi, M., Mohammadi, M. and Azizi, H., 2010. Evaluating the Effect of Processing Conditions and Organoclay Content on the Properties of Styrene-Butadiene Rubber/Organoclay Nanocomposites by Response Surface Methodology. Express Polym Lett, 4, pp.62-70. 80. Ghoneim, A. and Ismail, M., 1999. Studies on Epdm/Nr Blends. I. Dielectric and Mechanical Properties. Polymer-Plastics Technology and Engineering, 38 (5), pp.979-995. 81. Ginsberg, J. H., 2001. Mechanical and Structural Vibrations: Theory and Applications, 82. ed.: John Wiley & Sons Incorporated. 83. Gudarzi, M. M. and Sharif, F., 2011. Self Assembly of Graphene Oxide at the Liquid– Liquid Interface: A New Route to the Fabrication of Graphene Based Composites. Soft Matter, 7 (7), pp.3432-3440. 84. Guittonneau, F., Abdelouas, A., Grambow, B. and Huclier, S., 2010. The Effect of High Power Ultrasound on an Aqueous Suspension of Graphite. Ultrasonics sonochemistry, 17 (2), pp.391-398. 85. Gunasekaran, S., Natarajan, R. and Kala, A., 2007. Ftir Spectra and Mechanical Strength Analysis of Some Selected Rubber Derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68 (2), pp.323-330. 86. Harish Prashanth, K. and Tharanathan, R., 2007. Chitin/Chitosan: Modifications and Their Unlimited Application Potential-an Overview. Trends in food science & technology, 18 (3), pp.117-131. 87. Hilding, J., Grulke, E. A., George Zhang, Z. and Lockwood, F., 2003. Dispersion of Carbon Nanotubes in Liquids. Journal of Dispersion Science and Technology, 24 (1), pp.1- 41. 88. Hu, H., Zhao, L., Liu, J., Liu, Y., Cheng, J., Luo, J., Liang, Y., Tao, Y., Wang, X. and Zhao, J., 2012. Enhanced Dispersion of Carbon Nanotube in Silicone Rubber Assisted by Graphene. Polymer, 53 (15), pp.3378-3385. 89. Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R. E., 2006. Review Article: Polymer- Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. Journal of composite materials, 40 (17), pp.1511-1575. 90. Ismail, H. and Ahmad, H. S., 2013. Effect of Halloysite Nanotubes on Curing Behavior, Mechanical, and Microstructural Properties of Acrylonitrile–Butadiene Rubber Nanocomposites. Journal of Elastomers and Plastics, pp.0095244312469963. 91. Ismail, H. and Poh, B., 2000. Cure and Tear Properties of Enr 25/Smr L and Enr 50/Smr L Blends. European polymer journal, 36 (11), pp.2403-2408. 92. Jacob, A., 2012. Rubber-Layered Clay Nanocomposites. 93. Jancar, J., Douglas, J., Starr, F. W., Kumar, S., Cassagnau, P., Lesser, A., Sternstein, S. S. and Buehler, M., 2010. Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites. Polymer, 51 (15), pp.3321-3343. 94. Jiang, J., Oberdörster, G. and Biswas, P., 2009. Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies. Journal of Nanoparticle Research, 11 (1), pp.77-89. 95. Jones, D. I., 2001. Handbook of Viscoelastic Vibration Damping, ed.: John Wiley & Sons. 96. Karak, N., 2009. Fundamentals of Polymers: Raw Materials to Finish Products, ed.: PHI Learning Pvt. Ltd. 97. Khan, S. U., Li, C. Y., Siddiqui, N. A. and Kim, J.-K., 2011. Vibration Damping Characteristics of Carbon Fiber-Reinforced Composites Containing Multi-Walled Carbon Nanotubes. Composites Science and Technology, 71 (12), pp.1486-1494. 98. Khuri, A. I. and Cornell, J. A., 1996. Response Surfaces: Designs and Analyses, ed.: CRC press. 99. Kim, H., Abdala, A. A. and Macosko, C. W., 2010. Graphene/Polymer Nanocomposites. 100. Macromolecules, 43 (16), pp.6515-6530. 101. Kim, W., Lee, H., Kim, J. and Koh, S.-K., 2004. Fatigue Life Estimation of an Engine Rubber Mount. International journal of fatigue, 26 (5), pp.553-560. 102. Kleemann, W. and Weber, K., 1998. Elastomer Processing: Formulas and Tables, ed.: Hanser. 103. Kordani, N., Fereidoon, A. and Ashoori, M., 2010. Effect of Carbon Nanotube on Damping Properties of Epoxy. Journal of Electronic Science and Technology, 1, pp.007. 104. Kowalczyk, K., Svaricek, F., Bohn, C. and Karkosch, H. 2004. An Overview of Recent Automotive Applications of Active Vibration Control. DTIC Document. 105. Kuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H. and Lee, J. H., 2012. Chemical Functionalization of Graphene and Its Applications. Progress in Materials Science, 57 (7), pp.1061-1105. 106. Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S. and Lee, J. H., 2010. Recent Advances in Graphene Based Polymer Composites. Progress in Polymer Science, 35 (11), pp.1350-1375. 107. Kukreja, T., Kumar, D., Prasad, K., Chauhan, R., Choe, S. and Kundu, P., 2002. Optimisation of Physical and Mechanical Properties of Rubber Compounds by Response Surface Methodology––Two Component Modelling Using Vegetable Oil and Carbon Black. European polymer journal, 38 (7), pp.1417-1422. 108. Kumar, A., Dipak, G. and Basu, K., 2002. Natural Rubber–Ethylene‐Propylene‐Diene Rubber Covulcanization: Effect of Reinforcing Fillers. Journal of applied polymer science, 109. 84 (5), pp.1001-1010. 110. Kwak, G., Inoue, K., Tominaga, Y., Asai, S. and Sumita, M., 2001. Characterization of the Vibrational Damping Loss Factor and Viscoelastic Properties of Ethylene–Propylene 111. Rubbers Reinforced with Micro‐Scale Fillers. Journal of applied polymer science, 82 (12), 112. pp.3058-3066. 113. Law, H., Rossiter, P., Koss, L. and Simon, G., 1995. Mechanisms in Damping of Mechanical Vibration by Piezoelectric Ceramic-Polymer Composite Materials. Journal of Materials Science, 30 (10), pp.2648-2655. 114. Layek, R. K. and Nandi, A. K., 2013. A Review on Synthesis and Properties of Polymer Functionalized Graphene. Polymer, 54 (19), pp.5087-5103. 115. Leblanc, J. L., 2002. Rubber–Filler Interactions and Rheological Properties in Filled Compounds. Progress in Polymer Science, 27 (4), pp.627-687. 116. Lee, J. and Kim, S., 2007. Optimal Design of Engine Mount Rubber Considering Stiffness and Fatigue Strength. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221 (7), pp.823-835. 117. Lee, J. K., Song, S. and Kim, B., 2012. Functionalized Graphene Sheets‐Epoxy Based Nanocomposite for Cryotank Composite Application. Polymer Composites, 33 (8), 118. pp.1263-1273. 119. Lewis, C., Bunyung, S. and Kiatkamjornwong, S., 2003. Rheological Properties and Compatibility of Nr/Epdm and Nr/Brominated Epdm Blends. Journal of applied polymer science, 89 (3), pp.837-847. 120. Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T. and Chen, Y., 2009a. 121. Molecular‐Level Dispersion of Graphene into Poly (Vinyl Alcohol) and Effective Reinforcement of Their Nanocomposites. Advanced Functional Materials, 19 (14), 122. pp.2297-2302. 123. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H. and Chen, Y., 2009b. Electromagnetic Interference Shielding of Graphene/Epoxy Composites. Carbon, 47 (3), pp.922-925. 124. Liao, F.-S., Su, A.-C. and Hsu, T.-C. J., 1994. Vibration Damping of Interleaved Carbon Fiber-Epoxy Composite Beams. Journal of composite materials, 28 (18), pp.1840-1854. 125. Liu, J., Guo, S., Han, L., Ren, W., Liu, Y. and Wang, E., 2012. Multiple Ph-Responsive Graphene Composites by Non-Covalent Modification with Chitosan. Talanta, 101, pp.151- 156. 126. Liu, L., Barber, A. H., Nuriel, S. and Wagner, H. D., 2005. Mechanical Properties of 127. Functionalized Single‐Walled Carbon‐Nanotube/Poly (Vinyl Alcohol) Nanocomposites. 128. Advanced Functional Materials, 15 (6), pp.975-980. 129. Loganathan, K., 1998. Rubber Engineering. Indian Rubber Institute, McGraw-Hill, New York, Chapter, 1 (2000). 130. Mao, Q., Zhao, B., Shen, D. and Li, Z., 1997. Influence of Polarization on Conductivity of Carbon Fibre Reinforced Cement. Chinese Journal of Materials Research(China), 11 (2), pp.195-198. 131. Margaritis, A. G. and Kalfoglou, N. K., 1987. Miscibility of Chlorinated Polymers with Epoxidized Poly (Hydrocarbons): 1. Epoxidized Natural Rubber/Poly (Vinyl Chloride) Blends. Polymer, 28 (3), pp.497-502. 132. Marques, P., Gonçalves, G., Cruz, S., Almeida, N., Singh, M., Grácio, J. and Sousa, A., 2011. Functionalized Graphene Nanocomposites. 133. Marquis, D. M., Guillaume, É. and Chivas-Joly, C., 2011. Properties of Nanofillers in Polymer. Nanocomposites and Polymers with Analytical Methods, 11, pp.261-262. 134. Mastromatteo, R., Mitchell, J. and Brett Jr, T., 1971. New Accelerators for Blends of Epdm. Rubber Chemistry and Technology, 44 (4), pp.1065-1079. 135. Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L. and Resasco, D. E., 2003. Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant Naddbs. The Journal of Physical Chemistry B, 107 (48), pp.13357-13367. 136. Menard, K. P., 2008. Dynamic Mechanical Analysis: A Practical Introduction, ed.: CRC press. 137. Meyer, J. C., Geim, A. K., Katsnelson, M., Novoselov, K., Booth, T. and Roth, S., 2007. The Structure of Suspended Graphene Sheets. Nature, 446 (7131), pp.60-63. 138. Mittal, V., 2010. Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications, ed.: John Wiley & Sons. 139. Mohamad, N., Muchtar, A., Ghazali, M. J., Mohd, D. H. and Azhari, C. H., 2010. Epoxidized Natural Rubber–Alumina Nanoparticle Composites: Optimization of Mixer Parameters Via Response Surface Methodology. Journal of applied polymer science, 115 (1), pp.183-189. 140. Mohamad, N., Yaakub, J., Abd Razak, J., Yaakob, M. Y., Shueb, M. I. and Muchtar, A., 141. 2014. Effects of Epoxidized Natural Rubber (Enr‐50) and Processing Parameters on the Properties of Nr/Epdm Blends Using Response Surface Methodology. Journal of applied 142. polymer science. 143. Mohamad, N. M., A.; Ghazali, M. J.; Mohd, D. H.; and Azhari, C. H., 2008. The Effect of Filler on Epoxidised Natural Rubber-Alumina Nanoparticles Composites. European Journal of Scientific Research, 24 ((4)), pp.538-547 144. Mohammed, M., Li, Z., Cui, J. and Chen, T.-p., 2012. Junction Investigation of Graphene/Silicon Schottky Diodes. Nanoscale research letters, 7 (1), pp.1-6. 145. Mohanty, S., Nando, G. B., Vijayan, K. and Neelakanthan, N., 1996. Mechanical and Dynamic Mechanical Properties of Miscible Blends of Epoxidized Natural Rubber and Poly (Ethylene- I Co/I-Acrylic Acid). Polymer, 37 (24), pp.5387-5394. 146. Mohd Ripin, Z. and Ooi, L. E., 2010. Dynamic Characterization of Engine Mount at Different Orientation Using Sine Swept Frequency Test. 147. Motaung, T. E., Luyt, A. S. and Thomas, S., 2011. Morphology and Properties of Nr/Epdm Rubber Blends Filled with Small Amounts of Titania Nanoparticles. Polymer Composites, 32 (8), pp.1289-1296. 148. Mousa, A. and Karger‐Kocsis, J., 2001. Rheological and Thermodynamical Behavior of Styrene/Butadiene Rubber‐Organoclay Nanocomposites. Macromolecular Materials and 149. Engineering, 286 (4), pp.260-266. 150. Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M., 2009. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, ed.: John Wiley & Sons. 151. Nakajima, N., 2000. Science and Practice of Rubber Mixing, ed.: iSmithers Rapra Publishing. 152. Nanoamor Retrieved April 14, 2010. Nanostructured and Amorphous Materials. 153. Nassiri, H., Arabi, H., Hakim, S. and Bolandi, S., 2011. Polymerization of Propylene with Ziegler–Natta Catalyst: Optimization of Operating Conditions by Response Surface Methodology (Rsm). Polymer bulletin, 67 (7), pp.1393-1411. 154. Neşeli, S., Yaldız, S. and Türkeş, E., 2011. Optimization of Tool Geometry Parameters for Turning Operations Based on the Response Surface Methodology. Measurement, 44 (3), pp.580-587. 155. Noriman, N., Ismail, H. and Rashid, A., 2010. Characterization of Styrene Butadiene Rubber/Recycled Acrylonitrile-Butadiene Rubber (Sbr/Nbrr) Blends: The Effects of Epoxidized Natural Rubber (Enr-50) as a Compatibilizer. Polymer Testing, 29 (2), pp.200- 208. 156. Norton, M. P. and Karczub, D. G., 2003. Fundamentals of Noise and Vibration Analysis for Engineers, ed.: Cambridge university press. 157. Nugay, N. and Erman, B., 2001. Property Optimization in Nitrile Rubber Composites Via Hybrid Filler Systems. Journal of applied polymer science, 79 (2), pp.366-374. 158. O'Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D. and Smalley, R. E., 2001. Reversible Water-Solubilization of Single-Walled Carbon Nanotubes by Polymer Wrapping. Chemical Physics Letters, 342 (3), pp.265-271. 159. Olabisi, O., Robeson, L. and Shaw, M., Polymer–Polymer Miscibility, 1979. Academic, New York. 160. Oliveira, M. G. and Soares, B. G., 2001. Mercapto‐Modified Copolymers in Polymer Blends. Iii. The Effect of Functionalized Ethylene‐Propylene‐Diene Rubber (Epdm) on 161. Curing and Mechanical Properties of Nbr/Epdm Blends. Journal of applied polymer 162. science, 82 (1), pp.38-52. 163. Oommen, Z. and Thomas, S., 1997. Mechanical Properties and Failure Mode of Thermoplastic Elastomers from Natural Rubber/Poly (Methyl Methacrylate)/Natural 164. Rubber‐G‐Poly (Methyl Methacrylate) Blends. Journal of applied polymer science, 65 (7), 165. pp.1245-1255. 166. Ozbas, B., O'Neill, C. D., Register, R. A., Aksay, I. A., Prud'homme, R. K. and Adamson, 167. D. H., 2012. Multifunctional Elastomer Nanocomposites with Functionalized Graphene Single Sheets. Journal of Polymer Science Part B: Polymer Physics, 50 (13), pp.910-916. 168. Pan, Y., Bao, H. and Li, L., 2011. Noncovalently Functionalized Multiwalled Carbon Nanotubes by Chitosan-Grafted Reduced Graphene Oxide and Their Synergistic Reinforcing Effects in Chitosan Films. ACS applied materials & interfaces, 3 (12), pp.4819-4830. 169. Pasbakhsh, P., Ismail, H., Fauzi, M. and Bakar, A. A., 2009. Influence of Maleic Anhydride Grafted Ethylene Propylene Diene Monomer (Mah-G-Epdm) on the Properties of Epdm Nanocomposites Reinforced by Halloysite Nanotubes. Polymer Testing, 28 (5), pp.548-559. 170. Patole, A. S., Patole, S. P., Kang, H., Yoo, J.-B., Kim, T.-H. and Ahn, J.-H., 2010. A Facile Approach to the Fabrication of Graphene/Polystyrene Nanocomposite by< I> in Situ</I> Microemulsion Polymerization. Journal of colloid and interface science, 350 (2), pp.530- 537. 171. Paul, D. R. and Bucknall, C., 2000. Polymer Blends, ed.: Wiley New York. 172. Pecharsky, V. and Zavalij, P., 2008. Fundamentals of Powder Diffraction and Structural Characterization of Materials, ed.: Springer. 173. Poh, B. and Te, C., 1999. Dependence of Mooney Scorch Time of Smr L, Enr 25, and Enr 50 on Concentration and Types of Antioxidants. Journal of applied polymer science, 74 (12), pp.2940-2946. 174. Pu, N.-W., Wang, C.-A., Liu, Y.-M., Sung, Y., Wang, D.-S. and Ger, M.-D., 2012. 175. Dispersion of Graphene in Aqueous Solutions with Different Types of Surfactants and the Production of Graphene Films by Spray or Drop Coating. Journal of the Taiwan Institute of Chemical Engineers, 43 (1), pp.140-146. 176. Quintana, M., Vazquez, E. and Prato, M., 2012. Organic Functionalization of Graphene in Dispersions. Accounts of chemical research, 46 (1), pp.138-148. 177. Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z. and Koratkar, N., 2009. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS nano, 3 (12), pp.3884-3890. 178. Raissi, S. and Farsani, R.-E., 2009. Statistical Process Optimization through Multi- Response Surface Methodology. World Academy of Science, Engineering and Technology, 51 (46), pp.267-271. 179. Rao, C. e. N. e. R., Sood, A. e. K., Subrahmanyam, K. e. S. and Govindaraj, A., 2009. 180. Graphene: The New Two‐Dimensional Nanomaterial. Angewandte Chemie International Edition, 48 (42), pp.7752-7777. 181. Rao, V. and Johns, J., 2008. Thermal Behavior of Chitosan/Natural Rubber Latex Blends Tg and Dsc Analysis. Journal of thermal analysis and calorimetry, 92 (3), pp.801-806. 182. Rippel, M. M. and Galembeck, F., 2009. Nanostructures and Adhesion in Natural Rubber: New Era for a Classic. Journal of the Brazilian Chemical Society, 20 (6), pp.1024-1030. 183. Robeson, L. M., 2007. Polymer Blends. Hanser, Munich, pp.109-210. 184. Roco, M. C., 2003. Broader Societal Issues of Nanotechnology. Journal of Nanoparticle Research, 5 (3-4), pp.181-189. 185. Rodgers, B., Waddell, W. H. and Klingensmith, W., 2004. Rubber Compounding, ed.: Wiley Online Library. 186. Roland, C., 2013. Immiscible Rubber Blends. Advances in Elastomers I. Springer. 187. Rothon, R., 2003. Particulate-Filled Polymer Composites, ed.: iSmithers Rapra Publishing. 188. Sadequl, A., Ishiaku, U., Ismail, H. and Poh, B., 1998. The Effect of Accelerator/Sulphur Ratio on the Scorch Time of Epoxidized Natural Rubber. European polymer journal, 34 (1), pp.51-57. 189. Sadhu, S. and Bhowmick, A. K., 2004. Preparation and Properties of Nanocomposites Based on Acrylonitrile–Butadiene Rubber, Styrene–Butadiene Rubber, and Polybutadiene Rubber. Journal of Polymer Science Part B: Polymer Physics, 42 (9), pp.1573-1585. 190. Sae-oui, P., Sirisinha, C., Thepsuwan, U. and Thapthong, P., 2007. Influence of Accelerator Type on Properties of Nr/Epdm Blends. Polymer Testing, 26 (8), pp.1062- 1067. 191. Salavagione, H. J., Martínez, G. and Ellis, G., 2011. Graphene-Based Polymer Nanocomposites. Physics and Applications of Graphene—Experiments, In-Tech, Rijeka, pp.169-192. 192. Schaefer, R. J., 2002. Mechanical Properties of Rubber. Harris’ Shock and Vibration Handbook (5th edn), Harris CM, Piersol AG (eds). McGraw–Hill: New York. 193. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S. and Bhowmick, A. K., 2011. A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites. Progress in Polymer Science, 36 (5), pp.638-670. 194. Seppä, T., 2010. The Effect of Different Nanofillers on Properties and Mixing of Ethylene Propylene Diene Rubber. 195. Sethu, P. 2006. Studies on the Formulation and Mechanical and Dynamic Properties of Natural Rubber/Chloroprene Rubber Blend for Rubber Bushing Application [Ts1890. P987 2006 F Rb]. Universiti Sains Malaysia. 196. Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A. and Niu, L., 2009. Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-L-Lysine. Langmuir, 25 (20), pp.12030-12033. 197. Shao, L., Chang, X., Zhang, Y., Huang, Y., Yao, Y. and Guo, Z., 2013. Graphene Oxide Cross-Linked Chitosan Nanocomposite Membrane. Applied Surface Science, 280, pp.989- 992. 198. Shokuhfar, A., Khalili, S., Ashenai Ghasemi, F., Malekzadeh, K. and Raissi, S., 2008. Analysis and Optimization of Smart Hybrid Composite Plates Subjected to Low-Velocity Impact Using the Response Surface Methodology (Rsm). Thin-Walled Structures, 46 (11), pp.1204-1212. 199. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I. and Seal, S., 2011. Graphene Based Materials: Past, Present and Future. Progress in Materials Science, 56 (8), pp.1178- 1271. 200. Siriwardena, S., Ismail, H. and Ishiaku, U. S., 2001. A Comparison of White Rice Husk Ash and Silica as Fillers in Ethylene–Propylene–Diene Terpolymer Vulcanizates. Polymer International, 50 (6), pp.707-713. 201. Sirqueira, A. S. and Soares, B. G., 2003. The Effect of Mercapto-and Thioacetate-Modified Epdm on the Curing Parameters and Mechanical Properties of Natural Rubber/Epdm Blends. European polymer journal, 39 (12), pp.2283-2290. 202. Sjöberg, M., 2002. On Dynamic Properties of Rubber Isolators. 203. Sombatsompop, N., 1998. Investigation of Swelling Behavior of Nr Vulcanisates. 204. Polymer–Plastics Technology and Engineering, 37 (1), pp.19-39. Sommer, J. G., 2009. Engineered Rubber Products, ed.: Hanser. 205. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S., 2006. Graphene-Based Composite Materials. Nature, 442 (7100), pp.282-286. 206. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. and Ruoff, R. S., 2007. Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45 (7), pp.1558-1565. 207. Steurer, P., Wissert, R., Thomann, R. and Mülhaupt, R., 2009. Functionalized Graphenes and Thermoplastic Nanocomposites Based Upon Expanded Graphite Oxide. 208. Macromolecular rapid communications, 30 (4‐5), pp.316-327. 209. Sui, X., Zapotoczny, S., Benetti, E. M., Schön, P. and Vancso, G. J., 2010. 210. Characterization and Molecular Engineering of Surface-Grafted Polymer Brushes across the Length Scales by Atomic Force Microscopy. Journal of Materials Chemistry, 20 (24), pp.4981-4993. 211. Tang, Q., Zhou, Z. and Chen, Z., 2013. Graphene-Related Nanomaterials: Tuning Properties by Functionalization. Nanoscale, 5 (11), pp.4541-4583. 212. Tanrattanakul, V., Sungthong, N. and Raksa, P., 2008. Rubber Toughening of Nylon 6 with Epoxidized Natural Rubber. Polymer Testing, 27 (7), pp.794-800. 213. Teh, P., Mohd Ishak, Z., Hashim, A., Karger-Kocsis, J. and Ishiaku, U., 2004. Effects of Epoxidized Natural Rubber as a Compatibilizer in Melt Compounded Natural Rubber– Organoclay Nanocomposites. European polymer journal, 40 (11), pp.2513-2521. 214. Thomas, S., 2013. Advances in Elastomers: Their Blends and Interpenetrating Networks- State of Art, New Challenges and Opportunities. Advances in Elastomers I: Blends and Interpenetrating Networks, 1, pp.1. 215. Thomas, S. and Stephen, R., 2010. Rubber Nanocomposites: Preparation, Properties and Applications, ed.: John Wiley & Sons. 216. Thuechart, T. 2007. Utilization of Various Fillers for Rubber Mat Development. Kasetsart University. 217. Tkalya, E. E., Ghislandi, M., de With, G. and Koning, C. E., 2012. The Use of Surfactants for Dispersing Carbon Nanotubes and Graphene to Make Conductive Nanocomposites. Current Opinion in Colloid & Interface Science, 17 (4), pp.225-232. 218. Tobing, S. D. 1990. Co-Curing of Nr/Epdm Rubber Blends. Google Patents. 219. Tosaka, M., Murakami, S., Poompradub, S., Kohjiya, S., Ikeda, Y., Toki, S., Sics, I. and Hsiao, B. S., 2004. Orientation and Crystallization of Natural Rubber Network as Revealed by Waxd Using Synchrotron Radiation. Macromolecules, 37 (9), pp.3299-3309. 220. Utracki, L. A., 2002. Polymer Blends Handbook, ed.: Kluwer Academic Publishers Dordrecht, The Netherlands. 221. Varghese, T. V., Ajith Kumar, H., Anitha, S., Ratheesh, S., Rajeev, R. and Lakshmana Rao, V., 2013. Reinforcement of Acrylonitrile Butadiene Rubber Using Pristine Few Layer Graphene and Its Hybrid Fillers. Carbon, 61, pp.476-486. 222. Verdejo, R., Bernal, M. M., Romasanta, L. J. and Lopez-Manchado, M. A., 2011. Graphene Filled Polymer Nanocomposites. Journal of Materials Chemistry, 21 (10), pp.3301-3310. 223. Vergnaud, J.-M. and Rosca, I.-D., 2010. Rubber Curing and Properties, ed.: CRC Press. 224. Viculis, L. M., Mack, J. J., Mayer, O. M., Hahn, H. T. and Kaner, R. B., 2005. Intercalation and Exfoliation Routes to Graphite Nanoplatelets. Journal of Materials Chemistry, 15 (9), pp.974-978. 225. Visakh, P. M., Thomas, S., Chandra, A. K. and Mathew, A. P., 2013. Advances in Elastomers I: Blends and Interpenetrating Networks, ed.: Springer. 226. Winey, K. I. and Vaia, R. A., 2007. Polymer Nanocomposites. MRS bulletin, 32 (04), pp.314-322. 227. Wu, X., Qi, S., He, J. and Duan, G., 2010. High Conductivity and Low Percolation Threshold in Polyaniline/Graphite Nanosheets Composites. Journal of Materials Science, 45 (2), pp.483-489. 228. Wypych, G., 1999. Handbook of Fillers, ed. 229. Xu, K., He, C. Z., Wang, Y. Q., Luo, Y. Y., Liao, S. Q. and Peng, Z., 2012. Preparation and Characterization of Epoxidized Natural Rubber. Advanced Materials Research, 396, pp.478-481. 230. Xu, Y., Bai, H., Lu, G., Li, C. and Shi, G., 2008. Flexible Graphene Films Via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 130 (18), pp.5856-5857. 231. Yang, X., Li, L., Shang, S. and Tao, X.-m., 2010a. Synthesis and Characterization of Layer-Aligned Poly (Vinyl Alcohol)/Graphene Nanocomposites. Polymer, 51 (15), pp.3431-3435. 232. Yang, X., Tu, Y., Li, L., Shang, S. and Tao, X.-m., 2010b. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS applied materials & interfaces, 2 (6), pp.1707-1713. 233. Yanhui, Y., Dong, L., Ziyan, H. and Zijian, L., 2010. Optimization of Preform Shapes by Rsm and Fem to Improve Deformation Homogeneity in Aerospace Forgings. Chinese journal of aeronautics, 23 (2), pp.260-267. 234. Yi, H., Wu, L.-Q., Bentley, W. E., Ghodssi, R., Rubloff, G. W., Culver, J. N. and Payne, G. F., 2005. Biofabrication with Chitosan. Biomacromolecules, 6 (6), pp.2881-2894. 235. Yu, Y., Dukkipati, R. V., Peelamedu, S. M. and Naganathan, N. G., 2001. Automotive Vehicle Engine Mounting Systems: A Survey. Journal of Dynamic Systems, Measurement, and Control, 123 (2), pp.186-194. 236. Zaman, I., Kuan, H.-C., Dai, J., Kawashima, N., Michelmore, A., Sovi, A., Dong, S., Luong, L. and Ma, J., 2012. From Carbon Nanotubes and Silicate Layers to Graphene Platelets for Polymer Nanocomposites. Nanoscale, 4 (15), pp.4578-4586. 237. Zaman, I., Phan, T. T., Kuan, H.-C., Meng, Q., Bao La, L. T., Luong, L., Youssf, O. and Ma, J., 2011. Epoxy/Graphene Platelets Nanocomposites with Two Levels of Interface Strength. Polymer, 52 (7), pp.1603-1611. 238. Zhang, H., 2009. Epdm-Rubber in Blends with Nr/Br-Elastomers for Ozone-Resistant Tyre Sidewall Applications, ed.: University of Twente. 239. Zhang, H., Datta, R., Talma, A. and Noordermeer, J., 2009. Mixing, Curing and Reinforcement of Nr/Br/Epdm Blends for Tire Sidewall Applications. Rubber Chemistry and Technology, 82 (3), pp.379-399. 240. Zhang, W., He, W. and Jing, X., 2010. Preparation of a Stable Graphene Dispersion with High Concentration by Ultrasound. The Journal of Physical Chemistry B, 114 (32), pp.10368-10373. 241. Zinatizadeh, A., Mohamed, A., Abdullah, A., Mashitah, M., Hasnain Isa, M. and Najafpour, G., 2006. Process Modeling and Analysis of Palm Oil Mill Effluent Treatment in an up- Flow Anaerobic Sludge Fixed Film Bioreactor Using Response Surface Methodology (Rsm). Water research, 40 (17), pp.3193-3208. 242. Zuo, P.-P., Feng, H.-F., Xu, Z.-Z., Zhang, L.-F., Zhang, Y.-L., Xia, W. and Zhang, W.-Q., 2013. Fabrication of Biocompatible and Mechanically Reinforced Graphen Oxide-Chitosan Nanocomposite Films. Chemistry Central Journal, 7 (1), pp.1-11.