Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)

Electrochemical capacitor (EC) is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the EC cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is...

Full description

Saved in:
Bibliographic Details
Main Author: Raja Seman, Raja Noor Amalina
Format: Thesis
Language:English
English
Published: 2016
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/18378/1/Direct%20Growth%20Of%20Vertically%20Aligned%20Carbon%20Nanotube%20%28VACNT%29%20On%20Different%20Conducting%20Substrates%20For%20Electrochemical%20Capacitor%20%28EC%29.pdf
http://eprints.utem.edu.my/id/eprint/18378/2/Direct%20Growth%20Of%20Vertically%20Aligned%20Carbon%20Nanotube%20%28VACNT%29%20On%20Different%20Conducting%20Substrates%20For%20Electrochemical%20Capacitor%20%28EC%29.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.18378
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Raja Seman, Raja Noor Amalina
Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)
description Electrochemical capacitor (EC) is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the EC cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is to introduce direct growth of vertically aligned carbon nanotube (VACNT) on conducting substrates, namely SUS 310S, Inconel 600, and YEF 50 and their usage as symmetric VACNT electrode in EC. The substrates were deposited by alumina and cobalt catalyst thin films, and then the growth was done by using alcohol catalytic chemical vapour deposition. By this, VACNT was successfully grown and their structures (dimension, walls)have been confirmed by means of electron microscopies. The thickness of the VACNT is typically about 31.68 μm (SUS 310S) and 10.58 μm (Inconel 600), respectively which indicate that no particular agglomerated metals were observed on the exposed surface of the substrate.In contrast, the field emission scanning electron microscopy (FESEM) image obtained shows that most of the entire areas, a thicker carbon products forest/agglomerated was formed on the top surface of YEF 50 substrate. Meanwhile, the transmission electron microscopy (TEM)image reveals that the VACNT on Co/Al2O3/SUS 310S are multi-walled CNTs (MWCNTs) with the inner and outer diameter of CNTs are approximately 4.89 nm and 16.43 nm, respectively. The Raman spectra results indicate that the CNT was typical of MWCNTs,which is in agreement with the TEM observation. Regardless of the difference in current collectors being used, cyclic voltammetry (CV) analysis from the EC depicted a relatively good specific gravimetric capacitance (Csp) and rate capability performance. A nearly rectangular-shaped CV curve was observed even at a scan rate of 1000 mV s−1. The Csp measured at 1 mV s-1 was 33.35 F g-1 (SUS 310S), 16.73 F g-1 (Inconel 600), and 24.82 F g-1 (YEF 50), respectively. Besides, from the charge-discharge measurement, the symmetrical triangular curves reveal that there is no IR drops or voltage drops because of low internal resistance in the electrode for SUS 310S, Inconel 600, and YEF 50 substrates. Also, the VACNT electrode shows excellent discharge behaviour and good capacitance retention of up to 1,000 cycles. Thus, this binder free and aligned CNT structure may provide excellent rate capabilities, high capacitance, and long lifecycle energy device. This is very promising for then development of high energy and high power density of device for multi-scale applications or industries.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Raja Seman, Raja Noor Amalina
author_facet Raja Seman, Raja Noor Amalina
author_sort Raja Seman, Raja Noor Amalina
title Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)
title_short Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)
title_full Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)
title_fullStr Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)
title_full_unstemmed Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC)
title_sort direct growth of vertically aligned carbon nanotube (vacnt) on different conducting substrates for electrochemical capacitor (ec)
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Manufacturing Engineering
publishDate 2016
url http://eprints.utem.edu.my/id/eprint/18378/1/Direct%20Growth%20Of%20Vertically%20Aligned%20Carbon%20Nanotube%20%28VACNT%29%20On%20Different%20Conducting%20Substrates%20For%20Electrochemical%20Capacitor%20%28EC%29.pdf
http://eprints.utem.edu.my/id/eprint/18378/2/Direct%20Growth%20Of%20Vertically%20Aligned%20Carbon%20Nanotube%20%28VACNT%29%20On%20Different%20Conducting%20Substrates%20For%20Electrochemical%20Capacitor%20%28EC%29.pdf
_version_ 1747833926661963776
spelling my-utem-ep.183782021-10-10T16:16:10Z Direct Growth Of Vertically Aligned Carbon Nanotube (VACNT) On Different Conducting Substrates For Electrochemical Capacitor (EC) 2016 Raja Seman, Raja Noor Amalina T Technology (General) TA Engineering (General). Civil engineering (General) Electrochemical capacitor (EC) is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the EC cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is to introduce direct growth of vertically aligned carbon nanotube (VACNT) on conducting substrates, namely SUS 310S, Inconel 600, and YEF 50 and their usage as symmetric VACNT electrode in EC. The substrates were deposited by alumina and cobalt catalyst thin films, and then the growth was done by using alcohol catalytic chemical vapour deposition. By this, VACNT was successfully grown and their structures (dimension, walls)have been confirmed by means of electron microscopies. The thickness of the VACNT is typically about 31.68 μm (SUS 310S) and 10.58 μm (Inconel 600), respectively which indicate that no particular agglomerated metals were observed on the exposed surface of the substrate.In contrast, the field emission scanning electron microscopy (FESEM) image obtained shows that most of the entire areas, a thicker carbon products forest/agglomerated was formed on the top surface of YEF 50 substrate. Meanwhile, the transmission electron microscopy (TEM)image reveals that the VACNT on Co/Al2O3/SUS 310S are multi-walled CNTs (MWCNTs) with the inner and outer diameter of CNTs are approximately 4.89 nm and 16.43 nm, respectively. The Raman spectra results indicate that the CNT was typical of MWCNTs,which is in agreement with the TEM observation. Regardless of the difference in current collectors being used, cyclic voltammetry (CV) analysis from the EC depicted a relatively good specific gravimetric capacitance (Csp) and rate capability performance. A nearly rectangular-shaped CV curve was observed even at a scan rate of 1000 mV s−1. The Csp measured at 1 mV s-1 was 33.35 F g-1 (SUS 310S), 16.73 F g-1 (Inconel 600), and 24.82 F g-1 (YEF 50), respectively. Besides, from the charge-discharge measurement, the symmetrical triangular curves reveal that there is no IR drops or voltage drops because of low internal resistance in the electrode for SUS 310S, Inconel 600, and YEF 50 substrates. Also, the VACNT electrode shows excellent discharge behaviour and good capacitance retention of up to 1,000 cycles. Thus, this binder free and aligned CNT structure may provide excellent rate capabilities, high capacitance, and long lifecycle energy device. This is very promising for then development of high energy and high power density of device for multi-scale applications or industries. 2016 Thesis http://eprints.utem.edu.my/id/eprint/18378/ http://eprints.utem.edu.my/id/eprint/18378/1/Direct%20Growth%20Of%20Vertically%20Aligned%20Carbon%20Nanotube%20%28VACNT%29%20On%20Different%20Conducting%20Substrates%20For%20Electrochemical%20Capacitor%20%28EC%29.pdf text en public http://eprints.utem.edu.my/id/eprint/18378/2/Direct%20Growth%20Of%20Vertically%20Aligned%20Carbon%20Nanotube%20%28VACNT%29%20On%20Different%20Conducting%20Substrates%20For%20Electrochemical%20Capacitor%20%28EC%29.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=100143 mphil masters Universiti Teknikal Malaysia Melaka Faculty of Manufacturing Engineering 1. Abdeen, M.A. and Aljaafari, A.A., 2011. Synthesis of CNTs on Silicon Substrates using Alcohol Catalytic CVD. Materials Sciences and Application, 2, pp. 922-935. 2. Afolabi, A.S., Abdulkareem, A.S., Mhlanga,S.D. and Iyuke, S.E., 2011. Synthesis and Purification of bimetallic catalyzed CNTs in a horizontal CVD reactor. J. Exp. Nanosci., 6, pp. 248–262. 3. Alyamani A. and Lemine O.M., 2012. FE-SEM Characterization of Some Nanomaterial, InTech, pp. 463-472. [online] Available at: http://www.intechopen.com/books/scanning-electron-microscopy/fe-sem-characterizationof- somenanomaterials 4. An, K.H., Kim, W.S., Park, Y.S., Moon, J.M., Bae, D.J., Lim, S.C., Lee, Y.S. and Lee, Y.H., 2001. Electrochemical Properties of High-Power Supercapacitors using Single- Walled CNT Electrodes. Adv. Funct. Mater., 11, pp. 387-392. 5. Arab, M., Berger, F., Picaud, F., Ramseyer, C., Glory, J. and Mayne L’Hermite, M., 2006. Direct Growth of the Multi-Walled CNTs as a Tool to Detect Ammonia at Room Temperature. Chem. Phys. Lett., 433 (1), pp. 175-181. 6. Azam, M.A., Fujiwara, A. and Shimoda, T., 2011. Direct Growth of Vertically-Aligned Single-Walled CNTs on Conducting Substrates using Ethanol for Electrochemical Capacitor. J. New Mater. Electrochem. Syst., 14, pp. 173-178. 7. Azam, M.A., Fujiwara, A. and Shimoda, T., 2011. Thermally Oxidized Aluminum as Catalyst Support Layer for Vertically Aligned Single-Walled CNT Growth using Ethanol. Appl. Surf. Sci., 258, pp. 873–882. 8. Azam, M.A., Fujiwara A. and Shimoda, T. 2013. Significant Capacitance Performance of Vertically Aligned Single-Walled CNT Supercapacitor by Varying Potassium Hydroxide Concentration. Int. J. Electrochem. Sci., 8, pp. 3902 – 3911. 9. Azam, M.A., Isomura, K., Isomura A. and Shimoda, T., 2011. Towards Realization of High Performance Electrochemical Device using Vertical-Aligned Single-Walled CNTs Grown from Ethanol. Global Engineers & Technologist Review, 1, pp. 1-8. 10. Azam, M.A., Isomura, K., Isomura, A. and Shimoda, T., 2012. Direct Growth of Vertically Aligned Single-Walled CNTs on Conducting Substrate and Its Electrochemical Performance in Ionic Liquids. Phys. Status Solidi A, pp. 1–7. 11. Azam, M.A., Jantan, N.H., Dorah, N., Seman, R.N.A.R., Manaf, N.S.A., Kudin, T.I.T. and Yahya, M.Z.A., 2015. Activated Carbon and Single-Walled CNT based EC in 1 M LiPF6 Electrolyte. Mater. Res. Bull., 69, pp. 20-23. 12. Azam, M.A., Manaf, N.S.A., Talib, E., and Bistamam, M.S.A., 2013. Aligned CNT from catalytic CVD technique for energy storage device: a review. Ionics, 19, pp. 1455-1476. 13. Barbieri, O., Hahn, M., Herzog, A. and KoTz, R., 2005. Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors. Carbon, 43, pp. 1303–1310. 14. Bard, A.J. and Faulkner, L.R., 2001. Electrochemical Methods 2nd ed., USA : John Wiley & Sons, Inc. 15. Belin, T. and Epron, F. 2005. Characterization Methods of CNTs: A Review. Materials Science and Engineering, 119, pp. 105–118. 16. Bistamam, M.S.A. and Azam, M.A., 2014. Tip-Growth of Aligned CNTs on Cobalt Catalyst Supported by Alumina using Alcohol Catalytic CVD. Results in Physics, 4, pp. 105-106. 17. Boyea, M., Camacho, R.E., Turano S.P. and Ready, W.J., 2007. CNT-based Supercapacitors: Technologies and Markets. Nanotechnology Law & Business, 4, pp. 585. 18. Bubna, P., Advani, S.G. and Prasad, A.K., 2012. Integration of Batteries with Ultracapacitors for a Fuel Cell Hybrid Transit Bus, J. Power Sources, 199, pp. 360–366. 19. Burke, A., 2000. Ultracapacitors: why, how, and where is the technology. J. Power Sources, 91, pp. 37–50. 20. Byon, H.R., Lim, H., Song H.J. and Choi, H.C., 2007. A Synthesis of High Purity Single- Walled CNTs from Small Diameters of Cobalt Nanoparticles by using Oxygen-Assisted Chemical Vapor Deposition Process. Bull. Korean Chem. Soc., 28 (11), pp. 2056–2060. 21. Candelariaa , S.L., Shaob, Y., Zhouc, W., Lib, X., Xiao, J., Zhang, J.G., Wang, Y., Liu, J., Li, J. and Cao, G.,2010. Nanostructured Carbon for Energy Storage and Conversion. Nano Energy, 1, pp. 195–220. 22. Chai, S.P., Zein S.H.S. and Mohamed A.R., 2006. Preparation of CNTs Over Cobalt- Containing Catalysts via Catalytic Decomposition of Methane. Chem Phys Lett., 426, pp. 345–350. 23. Chai, Y., Gong, J., Zhang, K., Chan, P.C.H., Yuen, M.M.F., 2007. Low Temperature Transfer of Aligned CNT Films using Liftoff Technique. 57th Electronic Components and Technology Conference, ECTC '07, pp. 429-434. 24. Chang, H.H., 2012. Electrochemically Synthesized Graphene/Polypyrrole Composites and Their use in Supercapacitor. Carbon, 50, pp. 2331-2336. 25. Chen, H., Roy, A., Baek, J.B., Zhu, L., Qu, J., and Dai L., 2010. Controlled Growth and Modification of VACNTs for Multifunctional Applications. Materials Science and Engineering R, 70, pp. 63–91. 26. Chen, J.H., Li, W.Z., Wang, D.Z., Yang, S.X., Wen, J.G. and Ren, Z.F., 2002. Electrochemical Characterization of CNTs as Electrode in EDLCs. Carbon, 40, pp. 1193- 1197. 27. Chen, Q.L., Xue, K.H., Shen, W., Tao, F.F., Yin, S.Y. and Xu, W., 2004. Fabrication and Electrochemical Properties of CNT Array Electrode for Supercapacitors. Electrochim. Acta, 49, pp. 4157-4161. 28. Chen, Y.M., Zhang, H.Y., Bu, J.L., Jiang Z.Y. and Jiao, S., 2011. The Supercapacitor properties of Aligned CNTs Array prepared by Radio Frequency Plasma-Enhanced Hot Filament CVD. Advances in Composites, Stafa-Zurich: Trans Tech Publications Ltd, 150, pp. 1560-1563. 29. Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J. and Milne, W.I., 2001. Growth process conditions of VACNTs using plasma enhanced CVD. J. Appl. Phys., 90 (10), pp. 5308-5317. 30. Co, A.C., Liu, J., Serebrennikova, I. and Birss, V.I., 2003. Microstructural and Electrochemical Study of Co oxide films formed by the Sol-Gel Technique., Surface Oxide Films: Proceedings of the International Symposium 2003, 25, pp. 20-31. 31. Conway, B.E., 1999. Electrochemical Supercapacitors: Scientific Fundamentals and Technology Applications, New York : Plenum Publisher, pp. 6. 32. Cui, X., Hu, F., Wei, W. and Chen, W., 2011. Dense and Long CNT arrays Decorated with Mn3O4 Nanoparticles for Electrodes of Electrochemical Supercapacitors. Carbon, 49, pp. 1225-1234. 33. Du, C.S. and Pan, N., 2005. Growth of Carbon Nanotubes Directly on Nickel Substrate. Mater. Lett., 59, pp. 1678-1682. 34. Du, C., Yeh, J., and Pan, N, 2005. High Power Density SCs using Locally aligned CNT electrodes. Nanotechnology, 16, PP. 350-353. 35. Du, C. and Pan, N., 2006. Supercapacitors using CNTs Films by Electrophoretic Deposition. J. Power Sources, 160, pp. 1487–1494. 36. Dumpala, S., Jasinski, J.B., Sumanasekera G.U. and Sunkara, M.K., 2011. Synthesis of Conical Carbon Nanotube Arrays: Mechanistic Aspects and Growth on Foil Substrates. Carbon, 49 (8), pp. 2725–2734. 37. Dresselhaus, M.S., Dresselhaus, G. and Saito, R., 1995. Physics of CNTs. Carbon, 33 (7), pp. 883-891. 38. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y. and Joo, S.W., 2014. CNTs: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Research Letters, 9, pp. 393. 39. El-Deen, A.G., El-Newehy, M., Kim C.S. and Barakat, N.A.M., 2015. Nitrogen-Doped, FeNi Alloy Nanoparticle-Decorated Graphene as an Efficient and Stable Electrode for Electrochemical in Acid Medium. Nanoscale Research Letters, 10, pp. 104-110. 40. Ellis, M., Duong, B. and Seraphin, S., 2012. Growing CNTs Vertically and Horizontally to The Substrate. A Review; Rjas, 2, pp. 161-174. 41. Esawi, A.M.K. and Farag, M.M., 2007. CNT Reinforced Composites: Potential and Current Challenges. Materials and Design, 28, pp. 2394-2401. 42. Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M. and Dai, H., 1999. Self-Oriented Regular Arrays of CNTs and their Field Emission Properties. Science, 283, pp. 512–514. 43. Farma, R., Deraman, M., Awitdrus, Talib, I.A., Omar, R., Manjunatha, J.G., Ishak, M.M., Basri, N.H., and Dolah, B.N.M., 2013. Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from CNT and Biomass Carbon. Int. J. Electrochem. Sci., 8, pp. 257-273. 44. Fernández, J.A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, F. and Centeno, T.A., 2008. Performance of Mesoporous Carbons Derived from Poly(vinyl alcohol) in ECs. J. Power Sources, 175, pp. 675-679. 45. Ferrari, A.C. and Robertson, J., 2000. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B, 61, pp. 14095. 46. Frackowiak, E. and Béguin, F., 2001. Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon, 39, pp. 937-950. 47. Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., 2006. Shape-engineerable and Highly Densely Packed SWCNTs and Their Application as SC electrodes. Nature Mater, 5, pp. 987–994. 48. Gao, L., Peng, A., Wang, Z.Y., Zhang, H., Shi, Z., Gu, Z., Cao, G. and Ding, B., 2008. Growth of Aligned CNT Arrays on Metallic Substrate and its Application to Supercapacitors. Solid State Communications, 146, pp. 380–383. 49. Ghosh A. and Lee, Y.H., 2012. Carbon-based ECs. Chemsuschem, 5, pp. 480-499. 50. Graham, A.P., Duesberg, G.S., Hoenlein, W., Kreupl, F., Liebau, M., Martin, R., Rajasekharan, B., Pamler, W., Seidel, R., Steinhoegl, W. and Unger, E., 2005. How Do CNTs Fit into the Semiconductor Roadmap? Applied Physics A: Materials Science & Processing, 80, pp. 1141-1151. 51. Grobert N., 2007. CNTs-Becoming Clean. Materials Today, 10, pp. 1-2. 52. Guittet, M., Aria, A.I. and Gharib, M., 2011. Use of Vertically-Aligned CNT Array to Enhance the Performance of ECs. 11th Ieee International Conference On Nanotechnology Portland Marriott, pp. 15-18. 53. Hao, Y., Qunfeng, Z., Fei, W., Weizhong, Q. and Guohua, L., 2003. Agglomerated CNTs Synthesized in a Fluidized Bed Reactor: Agglomerate Structure and Formation Mechanism. Carbon, 41 pp. 2855–2863. 54. Hiraoka, T., Yamada, T., Hata, K., Futaba, D.N., Kurachi, H., Uemura, S., Yumura, M. and Iijima, S., 2006. Synthesis of Single- and Double-Walled CNT Forests on Conducting Metal Foils. J. Am. Chem. Soc., 128, pp. 13338–13339. 55. Honda, Y., Haramoto, T., Takeshige, M., Shiozaki, H., Kitamura, T. and Ishikawa, M., 2007. Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance. Electrochemical and Solid-State Letters, 10, pp. A106-A110. 56. Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakrabarti ,S., Suekaned, O., Pan, L,. Nakayama, Y., Yamagata, M. and Ishikawa, M., 2008. Vertically Aligned Double-Walled CNT Electrode Prepared by Transfer Methodology for EDLC. J. Power Sources, 185, pp. 1580–1584. 57. Huang, Y., Liang, J. and Chen, Y., 2012. An Overview of the Applications of Graphenebased Materials in Supercapacitors. Small, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 8 (12), pp. 1805-1834. 58. Huh, Y., Green, M.L.H., Kim, Y.H., Lee, Y.C. and Lee, J., 2005. Control of CNT growth using Cobalt Nanoparticles as Catalyst. Applied Surface Science, 249, pp. 145–150. 59. Huimingwu, D., Rao, Ch. V., and Rambabu, B., 2009. Electrochemical Performance of Lini0.5mn1.5o4 Prepared by Improved Solid State Method as Cathode in Hybrid Supercapacitor. Materials Chemistry and Physics, 116, pp. 532–535. 60. Inagaki, M., Konno, H. and Tanaike, O., 2010. Carbon Materials for ECs. J. Power Sources, 195, pp. 7880–7903. 61. Inamdar, A.I., Kim, Y.S., Pawar, S.M., Kim, J.H., Im, H., Kim, H., 2011. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources, 196, pp. 2393-2397. 62. Izadi-Najafabadi. A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D.N., Hatori, H., Yumura, M., Iijima, S., Hata, K., 2010. Extracting the Full Potential of SWCNTs as Durable SC electrodes Operable at 4 V with High Power and Energy Density. Adv Mater, 22, PP. E235-E241. 63. Javier, J., 2014, An Introduction to Raman Spectroscopy: Introduction and Basic Principles. [online] Available at: http://www.spectroscopynow.com/details/education/sepspec1882education/An- Introduction-to-Raman-Spectroscopy-Introduction-and-Basic-Principles. 64. Jung, Y.J., Wei, B.Q., Vajtai, R. and Ajayan, P.M., 2003. Mechanism of Selective Growth of CNTs on SiO2/Si Patterns. Nano Lett., 3, pp. 561-564. 65. Katayama, T., Araki, H., Kajii, H. and Yoshino, K., 2001. Observation of CNTs Synthesized on Various Substrates using Metal-Phthalocyanine. Synthetic Metals, 121 (1- 3), pp.1235-1236. 66. Kim, B. Chung H. and Kim, W., 2012. High-Performance Supercapacitors based on Vertically Aligned CNTs and Nonaqueous Electrolytes. Nanotechnology, 23, pp. 155401- 155408. 67. Kim, B., Chung, H., Min, B.K., Kim, H. and Kim, W., 2010. ECs based on Aligned CNTs Directly Synthesized on Tantalum Substrates. Bull. Korean Chem. Soc., 31, pp. 3697. 68. Kim, H.D., Lee J.H. and Choi, W.S., 2011. Direct Growth of Carbon Nanotubes with a Catalyst of Nickel Nanoparticle-Coated Alumina Powders. J. Korean Phys. Soc., 58, pp. 112–115. 69. Kim, H.S., Kim, B., Lee, B., Chung, H., Lee, C.J., Yoon, H.G., Kim, W.J., 2009. Synthesis of Aligned Few-Walled CNTs on Conductive Substrates. Phys. Chem. C, 113 (42), pp. 17983-17988. 70. Kim, M., Nicholas, N., Kittrell, C., Haroz, E., Shan, H.W., Wainerdi, T.J., Lee, S., Schmidt, H.K., Smalley, R.E. and Hauge, R.H., 2006. Efficient Transfer of a VA-SWNT Film by a Flip-Over Technique. J. Am. Chem. Soc., 128, pp. 9312-9313. 71. Kim, W., Choi, H.C., Shim, M., Li, Y.M., Wang, D.W., and Dai, H.J., 2002. Synthesis of Ultralong and High Percentage of Semiconducting SWCNTs. Nano Lett. 2, pp. 703-708. 72. Kim, W., Javey, A., Tu, R., Cao, J., Wang, Q. and Dai, H., 2005. Electrical Contacts to CNTs Down to 1 nm in Diameter. J. Appl. Phys. Lett., 87 (17), pp. 173101. 73. Korenblit, Y., Rose, M., Kockrick, E., Borchardt, L., Kvit, A., Kaskel, S. and G. Yushin, 2010. High-Rate ECs based on Ordered Mesoporous Silicon Carbide-Derived Carbon. ACS Nano, 4, pp. 1337-1344. 74. Kotz, R. and Carlen, M., 1999. Principles and Applications of ECs. Electrochimica Acta, 45, pp. 2483-2498. 75. Krolow, M.Z.,Hartwig, C.A., Link, G.C.,Raubach, C.W., Pereira, J.S.F., Picoloto, R.S., Gonçalves, M.R.F., Carreño N.L.V. and Mesko, M.F., 2011. Synthesis and Characterisation of Carbon Nanocomposites. Nanocarbon. New York : Springer Science & Business Media, pp. 33-48. 76. Kumar, A., Pushparaj, V.L., Kar, S., Nalamasu, O., Ajayan, P.M. and Baskaran, R., 2006. Contact Transfer of Aligned CNT Arrays onto Conducting Substrates. Appl. Phys. Lett., 89 (16), pp. 163120-163123. 77. Kurzweil, P., Chwistek, M., and Gallay, R., 2006. Proc. 2nd European Symposium on Super Capacitors & Applications (ESSCAP). 78. Lee, H., Kang, T.D., Ahn, K.H., Bae, D.J., and Lee, Y.H., 2003. Visible-Ultraviolet Polarized Reflectivity Spectra of Anisotropically Aligned Single-Walled CNT Films. Jpn. J. Appl. Phys. Pt.1, 42, pp. 5880-5886. 79. Lefèvre, G., Duc, M., Lepeut, P., Caplain, R. and Fèdoroff M., 2002. Hydration of γ- Alumina in Water and Its Effects on Surface Reactivity. American Chemical Society, 18, pp. 7530-7537. 80. Li, J., Cheng, X., Shashurin, A., Keidar M., 2012. Review of ECs based on CNTs and Graphene. Graphene, 1, pp. 1-13. 81. Li, W.Z., Wang, D.Z., Yang, S.X., Wen, J.G. and Ren, Z.F., 2001. Controlled Growth of CNTs on Graphite Foil by CVD. Chem. Phys. Lett., 335, pp. 141-149. 82. Lin, C., Chen, C. and Shi, S., 2004. Field Emission Properties of aligned CNTs Grown on Stainless Steel using CH4/CO2 Reactant Gas. Diamond and Relat. Mater., 13, pp. 1026- 1031. 83. Liu C. and Cheng, H.M., 2013. CNTs: Controlled Growth and Application. Materials Today, 16, pp. 19-28. 84. Liu, C., Yu, Z., Neff, D., Zhamu, A. and Jang, B.Z., 2010. Graphene based Supercapacitor with an Ultrahigh Energy Density. Nano Lett., 10, pp. 4863-4868. 85. Liu, H., Zhang, Y., Arato, D., Li, R., Mérel, P. and Sun, X., 2008. Aligned Multi-Walled CNTs on Different Substrates by Floating Catalyst CVD: Critical Effects of Buffer Layer. Surface & Coatings Technology, 202, pp. 4114–4120. 86. Lu, W. and Dai, L., 2010 CNT supercapacitors. [online] Available at: http://www.intechopen.com/books/carbon-nanotubes/carbon-nanotube-supercapacitors 87. Lua, W., Qu, L., Henry, K. and Dai, L., 2009. High Performance ECs from Aligned CNT Electrodes and Ionic Liquid Electrolytes. J. Power Sources, 189, pp. 1270–1277. 88. Luo, Y., Wang, X,. He, M., Li, X. and Chen, H., 2012. Synthesis of High-Quality CNT Arrays without the Assistance of Water. J. Nanomaterials, 2012, pp 1-5. 89. Lv, P., Feng, Y.Y., Li, Y. and Feng, W., 2012. Carbon Fabric Aligned CNT/MnO2/conducting Polymers Ternary Composite Electrodes with High Utilization and Mass Loading of MnO2 for Supercapacitors. J. Power Sources, 220 pp. 160-168. 90. Ma, C. C., Zhao, Y., Yam, C. Y., Chen, G. H. and Jiang, Q., 2005. A Tribological Study of Double-Walled and Triple-Walled CNT oscillators. Nanotechnology, 16 (8), pp. 1253- 1264. 91. Madaan, N., Kanyal, S.S., Jensen, D.S., Vail, M.A., Dadson, A.E., Engelhard, M.H., Samha, H. and Linford, M.R., 2013. Al2O3 e-beam Evaporated onto Silicon (100)/SiO2 by XPS. Surf. Sci. Spectra, 20, pp. 43. 92. Mamalis, A.G., Vogtländer, L.O.G. and Markopoulos, A., 2004. Nanotechnology and Nanostructured Materials: Trends in CNTs. Precision Engineering, 28, pp.16–30. 93. Manaf, N.S.A., Bistamam, M.S.A. and Azam, M.A., 2013. Development of High Performance EC: A S ystematic Review of Electrode Fabrication Technique based on 94. Different Carbon Materials. ECS Journal of Solid State Science and Technology, 2, pp. M3101-M3119. 95. Merkoci, A., Pumera, M., Llopis, X., Perez, B., del Valle, M. and Alegret, S., 2005. New Materials for Elcetrochemical Sensing VI : CNTs. Trends Anal. Chem. 24, pp. 826-838. 96. Miller, J.R. and Simon, P., 2008. ECs for Energy Management. Science Magazine, 321, pp. 651-652. 97. Moshkalyova, S.A., Moreaub, A.L.D., Guttie´rrezb, H.R., Cottab, M.A. and Swart, J.W., 2004. CNTs Growth by CVD using Thin Film Nickel Catalyst; Materials Science and Engineering,112, pp. 147–153. 98. Murakami, H., Hirakawa, M., Tanaka, C. and Yamakawa, H., 2000. Field Emission from Well-Aligned, Patterned, CNT Emitters. Appl. Phys. Lett, 76 (13), pp. 1776-1778. 99. Nessim, G.D., Al-Obeidi, A., Grisaru, H., Polsen, E.S., Oliver, C.R., Zimrin, T., Hart, A. J., Aurbach, D. and Thompson, C.V., 2012. Synthesis of Tall Carpets of Vertically Aligned CNTs by in Situ Generation of Water Vapor through Preheating of Added Oxygen. Carbon 50, pp. 4002–4009. 100. Nie, L., Meng, A., Yu J. and Jaroniec M., 2013. Hierarchically Macro-Mesoporous Pt/γ- Al2O3 Composite Microspheres for Efficient Formaldehyde Oxidation at Room Temperature. Scientific reports, 3, pp. 3215-3220. 101. Nihei, M., Kawabata, A. and Awano, Y., 2003. Jpn. J. Appl. Phys., 42, pp. 721-723. 102. Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E. and Haddon, R.C., 2002. Chemistry of Single-Walled CNTs. Acc. Chem. Res., 35, pp. 1105-1113. 103. Obreja, V.V.N., 2014. Supercapacitors Specialities-Materials Review; AIP Conference Proceedings 1597, pp. 98-120. 104. O’Connor, D.J., Sexton, B.A. and Smart, R.S.C., 2003. Surface Analysis Methods in Materials Science. New York: Springer Publishers. 105. Ostafiychuk, B.K., Budzulyak, I.M., Rachiy, B.I., Vashchynsky, V.M., Mandzyuk, V., Lisovsky R.P. and Shyyko, L.O. 2015. Thermochemically Activated Carbon as an Electrode Material for Supercapacitors. Nanoscale Research Letters, 10, pp. 65-72. 106. Pak, J., Chang, J., Nam, K., Lee, J., Kim J. and Park, G., 2003. Electrical Properties of Bi3:25LaO:75Ti3O12 Thin Films on Indium Tin Oxide Coated Glass Substrates Grown by Pulsed Laser Deposition Method. J. The Korean Physical Society, 42, pp. S1330-S1333. 107. Pan, H., Li, J.Y. and Feng, Y.P., 2010. CNT for Supercapacitors. Nanoscale Res. Lett., 5, pp. 654-668. 108. Paradise, M. and Goswami, T., 2007. CNTs-Production and Industrial Applications. Materials and Design, 28, pp.1477–1489. 109. Parthangal, P., Cavicchi, R. and Zachariah, M. 2007. A Generic Process of Growing Aligned CNT Array on Metals and Metals Alloy. Nanotechnology, 18, pp. 185605. 110. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P., and Simon, P., 2010 Ultrahigh-Power Micrometre-Sized Supercapacitors based on Onion-Like Carbon. Nature Nanotechnology, 5, pp. 651-654. 111. Pell, W.G. and Conway, B.E., 2001. Voltammetry at a de Levie Brush Electrode as a Model for Electrochemical Supercapacitor Behaviour. J Electroanalytical Chem., 500, pp. 121-133. 112. Petitto, S.C.; Marsh, E.M.; Carson, G.A. and Langell, M., 2008. Cobalt Oxide Surface Chemistry: The Interaction of CoO (1 0 0), Co3O4 (1 1 0), and Co3O4 (1 1 1) with Oxygen and Water. Journal of Molecular Catalysis A: Chemical, 281 (1-2), pp. 49-58. 113. Pint, C.L., Nicholas, N.W., S., Xu, Sun, Z., Tour, J.M., Schmidt, H.K., Gordon, R.G. and Hauge, R.H., 2011. Three Dimensional Solid-State Supercapacitors from Aligned Single- Walled CNT Array Templates. Carbon, 49, pp. 4890-4897. 114. Piscanec, S., Lazzeri, M., Robertson, J., Ferrari, A.C. and F. Mauri, 2007. Optical Phonons in CNTs: Kohn Anomalies, Peierls Distortions, and Dynamic Effects. Phys. Rev. B 75 pp. 035427-22. 115. Popov, V.N., 2004. CNTs: Properties and Application. Materials Science and Engineering, 43, pp. 61–102. 116. Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V. and Kizek, R., 2011. Methods for CNTs Synthesis-Review. J. Mater. Chem., 21, pp. 15872-15884. 117. Raney, J.R., Misra, A. and Daraio, C., 2011. Tailoring the Microstructure and Mechanical Properties of Arrays of Aligned Multiwall CNTs by Utilizing Different Hydrogen Concentrations during Synthesis. Carbon, 49, pp. 3631 –3638. 118. Seah, C.M., Chai, S.P., and Mohamed, A. R., 2011. Synthesis of Aligned CNTs. Carbon, 49, pp. 4613-4635. 119. Seraphin, S. and Zhou, D., 1994. Single-Walled CNTs Produced at High Yield by Mixed Catalysts. Appl. Phys. Lett., 64, pp. 2087-2089. 120. Shah, R., Zhang, X.F. and S. Talapatra, 2009. EDLCs using Aligned CNTs Grown Directly on Metals. Nanotechnol., 20, pp. 395202. 121. Sharma, P. and Bhatti, T.S., 2010. A Review on EDLCs. Energy Convers Manage, 51, pp. 2901–2912. 122. Shen, J., Liu, A., Tu, Y., Wang, H., Jiang, R., Ouyang, J. and Chen, Y., 2012. Asymmetric Deposition of Manganese Oxide in Single Walled CNT Films as Electrodes for Flexible High Frequency Response. Electrochimica Acta, 78, pp. 122-132. 123. Shi, R., Jiang, L. and Pan, C., 2011. A Single-Step Process for Preparing Supercapacitor Electrodes from CNTs. Soft Nanoscience Letters, 1, pp. 11-15. 124. Shin, Y.M., Jeong, S.Y., Jeong, H.J., Eum, S.J., Yang, C.W., Park, C.Y. and Lee, Y.H., 2004. Influence of Morphology of Catalyst Thin Film on Vertically Aligned CNT Growth. J. Crystal Growth. 271, pp. 81–89. 125. Simon, P. and Gogotsi, Y., 2010. Charge Storage Mechanism in Nanoporous Carbons and its Consequence for EDLCs. Phil. Trans. R. Soc. A, 368, pp. 3457–3467. 126. Simon, P. and Gogotsi, Y., 2008. Materials for ECs. Nat Mater, 7, pp. 845–854. 127. Singh, J., Quli, F., Wolfe, D. E., Schriempf, J. T., and Singh, J., 2000. An Overview: EBPVD Technology- Present and Future Applications. pp. 1-16. [online] Available at: http://infohouse.p2ric.org/ref/02/01162.pdf 128. Steiner, S.A., Baumann, T.F., Bayer, B.C., Blume, R., Worsley, M. A., MoberlyChan, W. J., Shaw, E.L., Schlogl, R., Hart, A.J., Hofmann, S. and Wardle, B.L., 2009. Nanoscale Zirconia as a Nonmetallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall CNTs J. Am. Chem. Soc., 131 (34), pp. 12144–12154. 129. Stoller M.D. and Ruoff, R.S., 2010. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy Environ. Sci., 3, pp. 1294–1301. 130. Su, M., Zheng, B. and Liu, J., 2000. A Scalable CVD Method for the Synthesis of Single- Walled CNTs with High Catalyst Productivity. Chemical Physics Letters, 322, pp. 321– 326. 131. Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Cl. L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O. and Ajayan, P.M., 2006. Direct Growth of Aligned CNTs on Bulk Metals Nat. Nanotechnol., 1, pp. 112–116. 132. Vinten, P., Bond, J., Marshall, P., Lefebvre J. and Finnie, P., 2011. Origin of periodic Rippling during CVD Growth of CNT Forests. Carbon, 49, pp. 4972-4981. 133. Voelskow, K., Nickelsen, L., Becker, M. J., Xia, W., Muhler, M., Kunz, U., Weber, A. P., and Turek, T., 2013. Optical investigation of CNT Agglomerate Growth on Single Catalyst Particles. Chemical Engineering Journal, 234, pp. 74–79. 134. Vollmer, 2010. Lecture: Introduction into X-ray and UV Photoelectron Spectroscopy (XPS/UPS), [online] Available at: http://staff.mbi-berlin.de/hertel/ProMINT/MPSch/WS2010-11/Vollmer_WS_2010_02.pdf. 135. Wang, G., Shao, Z., and Yu, Z. 2007. Comparison of Different Carbon Conductive Additives on the Electrochemical Performance of AC. Nanotechnology, 18, pp. 205705. 136. Wei, S., Kang, W.P., Davidson, J.L. and Huang, J.H., 2008. Supercapacitive Behavior of CVD CNTs Grown on Ti Coated Si Wafer. Diamond & Related Materials, 17 (4-5), pp. 906-911. 137. Xiang, X., Zhang, L., Hima, H.I., Li, F. and Evans, D.G., 2009. Co-based Catalysts from Co/Fe/Al Layered Double Hydroxides for Preparation of CNTs. Appl. Clay Sci., 42, pp. 405–409. 138. Xu, F., Liu, X. and Tse, S., 2006. Synthesis of CNTs on Metal Alloy Substrates with Voltage Bias in Methane Inverse Diffusion Flames Carbon, 44, pp. 570-577. 139. Xu, Y., Dervishi, E., Biris, A.R. and Biris, A.S., 2011. Chirality-Enriched Semiconducting CNTs Synthesized on High Surface Area MgO-Supported Catalyst. Mater. Lett., 65, pp. 1878–1881. 140. Yan, J., Liu, J., Fan, Z., Wei, T. and Zhang, L., 2012. High-Performance Supercapacitor Electrodes based on Highly Corrugated Graphene Sheets. Carbon 50, pp. 2179-2188. 141. Yan, J., Fan, Z., Wei, T., Cheng, J., Shao, B., Wang, K., Song, L. and Zhang, M., 2009. CNT/MnO2 Composites Synthesized by Microwave-Assisted Method for Supercapacitors with High Power and Energy Densities J.Power Sources, 194, pp. 1202-1207. 142. Yang, J., Zhang, W.D. and Gunasekaran, S., 2011. A Low-Potential, H2O2-Assisted Electrodeposition of Cobalt Oxide/Hydroxide Nanostructures onto Vertically-Aligned Multi-Walled CNT Arrays for Glucose Sensing. Electrochimica Acta, 56, pp. 5538–5544. 143. Yang, Z., J., Zhang, J., Meyer, K., M.C.W., Lu, Choi, X.D. and Lemmon, J.P., 2011. Electrochemical Energy Storage for Green Grid. Chem Rev, 111, pp. 3577–3613. 144. Yu, H., He, J., Sun, L., Tanaka, S. and Fugetsu, B., 2013. Influence of the Electrochemical Reduction Process on the Performance of Graphene-based Capacitors. Carbon, 51, pp. 94- 101. 145. Yun, Z.S., Hai, L.X., Xing, W.Z., Jun, G.H. and Jie, P.W., 2007. Effect of Activated Carbon and Electrolyte on Properties of Supercapacitor. Trans. Nonferrous Met. Soc., 17 (6), pp. 1328-1333. 146. Zhang, H., Cao, G. and Yang, Y., 2007. Electrochemical Properties of Ultra-Long, Aligned, CNT Array Electrode in Organic Electrolyte. J. Power Sources, 172, pp. 476-480. 147. Zhang, H., Cao, G.P. and Yang, Y.S., 2007. Using A Cut–Paste Method to Prepare a CNT Fur Electrode. Nanotechnology, 18 (19), pp. 195607-195611. 148. Zhang, H., Cao, G.P., Wang, Z.Y., Yang, Y.S. and Gu, Z.N., 2008. Electrochemical Capacitive Properties of CNT Arrays Directly Grown on Glassy Carbon and Tantalum Foils. Carbon, 46, pp. 822-824. 149. Zhang, H., Cao, G., Wang, Z., Yang, Y. and Gu, Z., 2008. Electrochemical Capacitive Properties of CNT Arrays Directly Grown on Glassy Carbon and Tantalum Foils. Carbon, 46, pp. 818 –832. 150. Zhu, Y.J., Lin, T.J., Liu, Q.X., Chen, Y.L., Zhang, G.F., Xiong, H.F. and Zhang, H.Y., 2006. The Effect of Nickel Content of Composite Catalysts Synthesized by Hydrothermal Method on the Preparation of CNTs. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 127 (2-3), pp. 198–202. 151. Zhang, F.B, Zhou, Y.K, and Li, H.L, 2004. Nanocrystalline NiO as an Electrode Material for Electrochemical Capacitor. Mater Chem Phys, 83, pp. 260-264.