Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging

Osteoarthritis (OA) is a major health issues among the population, causing pain in the human joints. It is well recognised that the OA is mainly caused by the degeneration of articular cartilage. The earliest stage of OA resulted in the alteration of the biomechanical properties of cartilage elastic...

Full description

Saved in:
Bibliographic Details
Main Author: Yew, Wansin
Format: Thesis
Language:English
English
Published: 2017
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/20555/1/Study%20Of%20Biomechanical%20Properties%20Of%20Articular%20Cartilage%20Using%20Low-Field%20Magnetic%20Resonance%20Imaging.pdf
http://eprints.utem.edu.my/id/eprint/20555/2/Study%20of%20biomechanical%20properties%20of%20articular%20cartilage%20using%20low-field%20magnetic%20resonance%20imaging.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.20555
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Abd Latif, Mohd Juzaila

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Yew, Wansin
Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
description Osteoarthritis (OA) is a major health issues among the population, causing pain in the human joints. It is well recognised that the OA is mainly caused by the degeneration of articular cartilage. The earliest stage of OA resulted in the alteration of the biomechanical properties of cartilage elastic modulus and permeability. Hence, the ability to detect the disease at its earliest stage is crucial for early intervention of the disease. MRI technique is widely used to assess the condition of the articular cartilage by examining the geometrical data. However, most of the diagnoses were performed at the progressive stage of osteoarthritis. Furthermore, most of the previous works and current clinical procedures were performed using high-field MRI which require significant purchase and maintenance costs. Therefore, this study aimed to investigate the potential application of low-field MRI image in order to examine the condition of articular cartilage. Cartilage specimens obtained from the humeral head of bovine were scanned using 0.18 T MRI. It was found that the gradient echo sequence of the low-field MRI was the most suitable sequence to image the cartilage. The images of cartilage were characterised based on the intensity of the greyscale. Creep indentation test was then conducted on the cartilage specimens and subsequently the indentation test was simulated using finite element method. The biomechanical properties of cartilage elastic modulus and permeability were characterized by integrating the experimental indentation test data and computational finite element model. The average elastic modulus was found to be 0.93 ± 0.72 MPa while the permeability was 0.58 ± 0.31 ×10-15m4/Ns. Correlation analyses were performed to examine the relationship between the greyscale of MRI image and biomechanical properties of elastic modulus and permeability of the cartilage. It was found that the cartilage greyscale was moderately correlated with cartilage biphasic elastic modulus (r= 0. 513) and higher correlation was observed with the permeability (r= 0.613). Thus, present results indicate that the low-field MRI have the potential and provide promising insight to determine the condition of articular cartilage. It could be further develop to serve as an early intervention of OA disease.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Yew, Wansin
author_facet Yew, Wansin
author_sort Yew, Wansin
title Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
title_short Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
title_full Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
title_fullStr Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
title_full_unstemmed Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
title_sort study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Mechanical Engineering
publishDate 2017
url http://eprints.utem.edu.my/id/eprint/20555/1/Study%20Of%20Biomechanical%20Properties%20Of%20Articular%20Cartilage%20Using%20Low-Field%20Magnetic%20Resonance%20Imaging.pdf
http://eprints.utem.edu.my/id/eprint/20555/2/Study%20of%20biomechanical%20properties%20of%20articular%20cartilage%20using%20low-field%20magnetic%20resonance%20imaging.pdf
_version_ 1747833980839788544
spelling my-utem-ep.205552022-06-02T08:17:28Z Study of biomechanical properties of articular cartilage using low-field magnetic resonance imaging 2017 Yew, Wansin T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Osteoarthritis (OA) is a major health issues among the population, causing pain in the human joints. It is well recognised that the OA is mainly caused by the degeneration of articular cartilage. The earliest stage of OA resulted in the alteration of the biomechanical properties of cartilage elastic modulus and permeability. Hence, the ability to detect the disease at its earliest stage is crucial for early intervention of the disease. MRI technique is widely used to assess the condition of the articular cartilage by examining the geometrical data. However, most of the diagnoses were performed at the progressive stage of osteoarthritis. Furthermore, most of the previous works and current clinical procedures were performed using high-field MRI which require significant purchase and maintenance costs. Therefore, this study aimed to investigate the potential application of low-field MRI image in order to examine the condition of articular cartilage. Cartilage specimens obtained from the humeral head of bovine were scanned using 0.18 T MRI. It was found that the gradient echo sequence of the low-field MRI was the most suitable sequence to image the cartilage. The images of cartilage were characterised based on the intensity of the greyscale. Creep indentation test was then conducted on the cartilage specimens and subsequently the indentation test was simulated using finite element method. The biomechanical properties of cartilage elastic modulus and permeability were characterized by integrating the experimental indentation test data and computational finite element model. The average elastic modulus was found to be 0.93 ± 0.72 MPa while the permeability was 0.58 ± 0.31 ×10-15m4/Ns. Correlation analyses were performed to examine the relationship between the greyscale of MRI image and biomechanical properties of elastic modulus and permeability of the cartilage. It was found that the cartilage greyscale was moderately correlated with cartilage biphasic elastic modulus (r= 0. 513) and higher correlation was observed with the permeability (r= 0.613). Thus, present results indicate that the low-field MRI have the potential and provide promising insight to determine the condition of articular cartilage. It could be further develop to serve as an early intervention of OA disease. 2017 Thesis http://eprints.utem.edu.my/id/eprint/20555/ http://eprints.utem.edu.my/id/eprint/20555/1/Study%20Of%20Biomechanical%20Properties%20Of%20Articular%20Cartilage%20Using%20Low-Field%20Magnetic%20Resonance%20Imaging.pdf text en public http://eprints.utem.edu.my/id/eprint/20555/2/Study%20of%20biomechanical%20properties%20of%20articular%20cartilage%20using%20low-field%20magnetic%20resonance%20imaging.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=105831 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Mechanical Engineering Abd Latif, Mohd Juzaila 1. Adam, C., Eckstein, F., Milz, S., and Putz, R., 1998. The Distribution of Cartilage Thickness within the Joints of the Lower Limb of Elderly Individuals. Journal of Anatomy, 193(2), pp. 203–214. 2. Agnesi, F., Amrami, K.K., Frigo, C.A., and Kaufman, K.R., 2007. Semiautomated Digital Analysis of Knee Joint Space Width Using MR Images. Skeletal Radiol, 36(5), pp. 437–444. 3. Alobaidli, S., McQuaid, S., South, C., Prakash, V., Evans, P., and Nisbet, A., 2014. The Role of Texture Analysis in Imaging as an Outcome Predictor and Potential Tool in Radiotherapy Treatment Planning. British Journal of Radiology, 87(1042), p. 20140369. 4. Alvarez, C., Chicheportiche, V., Lequesne, M., Vicaut, E., and Laredo, J.D., 2005. Contribution of Helical Computed Tomography to the Evaluation of Early Hip Osteoarthritis : A Study in 18 Patients. Joint Bone Spine, 72(6), pp. 578–584. 5. Amoako, A.O., and Pujalte, G.G.A., 2014. Osteoarthritis in Young, Active, and Athletic Individuals. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 7, pp. 27–32. 6. Appelboom, T., Emery, P., Tant, L., Dumarey, N., and Schoutens, A., 2003. Evaluation of Technetium-99m-Ciprofloxacin (Infecton) for Detecting Sites of Inflammation in Arthritis. Rheumatology, 42(10), pp. 1179–1182. 7. Arnout, N., Myncke, J., Vanlauwe, J., Labey, L., Lismont, D., and Bellemans, J., 2013. The Influence of Freezing on the Tensile Strength of Tendon Grafts : A Biomechanical Study. Acta Orthopaedica Belgica, 79(4), pp. 435–443. 8. Athanasiou, K.A., Agarwal, A., Muffoletto, A., Dzida, F.J., Constantinides, G., and Glem, M., 1995. Biomechanical Properties of Hip Cartilage in Experimental Animal Models. Clinical Orthopaedics and Related Research, 316, pp. 254–266. 9. Balchandani, P., and Nadich, T.P., 2015. Ultra-High-Field MR Neuroimaging. American Journal of Neuroradiology, 36(7), pp. 1204–1215. 10. van Bergen, C.J., Gerards, R.M., Opdam, K.T., Terra, M.P., and Kerkhoffs, G.M., 2015. Diagnosing, Planning and Evaluating Osteochondral Ankle Defects with Imaging Modalities. World Journal of Orthopedics, 6(11), pp. 944–953. 11. Bergmann, T., Maeder, U., Fiebich, M., Dickob, M., Nattkemper, T.W., and Anselmetti, D., 2013. Categorization of Two-Photon Microscopy Images of Human Cartilage into States of Osteoarthritis. Osteoarthritis and Cartilage, 21(8), pp. 1074–1082. 12. Bhosale, A.M., and Richardson, J.B., 2008. Articular Cartilage: Structure, Injuries and Review of Management. British Medical Bulletin, 87(1), pp. 77–95. 13. Bingham, J.T., Papannagari, R., Van de Velde, S.K., Gross, C., Gill, T.J., Felson, D.T., Rubash, H.E., and Li, G., 2008. In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint. Rheumatology, 47(11), pp. 1622–1627. 14. Bitar, R., Leung, G., Perng, R., Tadros, S., Moody, A.R., Sarrazin, J., McGrefor, C., Nelson, A., and Roberts, T.P., 2006. MR Pulse Sequences : What Every Radiologist Wants to Know but Is Afraid to Ask 1. Radiographics, 26(2), pp. 513–537. 15. Blumenkrantz, G., and Majumdar, S., 2007. Quantitative Magnetic Resonance Imaging Of Articular Cartilage In Osteoarthritis. European Cells and Materials, 13(7), pp. 75–86. 16. Boschetti, F., Pennati, G., Gervaso, F., Peretti, G.M., and Dubini, G., 2004. Biomechanical Properties of Human Articular Cartilage under Compressive Loads. Biorheology, 41(3–4), pp. 159–166. 17. Braun, H.J., and Gold, G.E., 2012. Diagnosis of Osteoarthritis: Imaging. Bone, 51(2), pp. 278–288. 18. Breyer, T., Wanke, I., Maderwald, S., Woermann, F.G., Kraff, O., Theysohn, J.M., Ebner, A., Forsting, M., Ladd, M.E., and Schlamann, M., 2010. Imaging of Patients with Hippocampal Sclerosis at 7 Tesla. Academic Radiology, 17(4), pp. 421–426. 19. Bryan, R.N., Levy, L.M., Whitlow, W.D., Killian, J.M., Preziosi, T.J., Rosario, J.A., and Al, B.E.T., 1991. Diagnosis of Acute Cerebral Infarction : Comparison of CT and MR Imaging. American Journal of Neuroradiology, 12(4), pp. 611–620. 20. Buckwalter, J.A., Mankin, H.J., and Grodzinsky, A.J., 2005. Articular Cartilage and Osteoarthritis. Instructional Course Lectures, 54, pp. 465–480. 21. Burgkart, R., Glaser, C., Hyhlik-Dürr, A., Englmeier, K.H., Reiser, M., and Eckstein, F., 2001. Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis: Accuracy, Precision, and Diagnostic Value. Arthritis and Rheumatism, 44(9), pp. 2072–2077. 22. Butz, K.D., Chan, D.D., Nauman, E.A., and Neu, C.P., 2011. Stress Distributions and Material Properties Determined in Articular Cartilage from MRI-Based Finite Strains. Journal of Biomechanics, 44(15), pp. 2667–2672. 23. Camarero-Espinosa, S., Rothen-Rutishauser, B., Foster, E.J., and Weder, C., 2016. Articular Cartilage : From Formation to Tissue. Biomaterials Science, 4(5), pp. 734–767. 24. Chahine, N.O., Wang, C.C.-B., Hung, C.T., and Ateshian, G.A., 2004. Anistropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range from Tension to Compression. Journal Biomechanics, 37(8), pp. 1251–1261. 25. Chandra, S.S., Surowiec, R., Ho, C., Xia, Y., Engstrom, C., Crozier, S., and Fripp, J., 2016. Automated Analysis of Hip Joint Cartilage Combining MR T2 and Three-Dimensional Fast-Spin-Echo Images. Magnetic Resonance in Medicine, 75(1), pp. 403–413. 26. Changoor, A., Fereydoonzad, L., Yaroshinsky, A., and Buschmann, M.D., 2010. Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage. Journal of Biomechanical Engineering, 132(6), p. 64502. 27. Chen, L., Wu, Y., Yu, J., Jiao, Z., Ao, Y., Yu, C., Wang, J., and Cui, G., 2011. Effect of Repeated Freezing – Thawing on the Achilles Tendon of Rabbits. Arthroscopy, 19(6), pp. 1028–1034. 28. Chen, X., Zimmerman, B.K., and Lu, X.L., 2015. Determine the Equilibrium Mechanical Properties of Articular Cartilage from the Short-Term Indentation Response. Journal of Biomechanics, 48(1), pp. 176–180. 29. Chu, C.R., Szczodry, M., and Bruno, S., 2010. Animal Models for Cartilage Regeneration and Repair. Tissue Engineering. Part B, Reviews, 16(1), pp. 105–115. 30. Clavert, P., Kempf, J.F., Bonnomet, F., Boutemy, P., Marcelin, L., and Kahn, J.L., 2001. Effects of Freezing / Thawing on the Biomechanical Properties of Human Tendons. Surgical and Radiologic Anatomy, 23(4), pp. 259–262. 31. Coffey, A.M., Truong, M., and Chekmenev, E.Y., 2013. Low-Field MRI Can Be More Sensitive than High-Field MRI. Journal of Magnetic Resonance, 237, pp. 169–174. 32. Colombo, V., Cadová, M., and Gallo, L.M., 2013. Mechanical Behavior of Bovine Nasal Cartilage under Static and Dynamic Loading. Journal of Biomechanics, 46(13), pp. 2137–2144. 33. Cotten, A., Delfaut, E., Demondion, X., Lapègue, F., Boukhelifa, M., Boutry, N., Chastanet, P., and Gougeon, F., 2000. MR Imaging of the Knee at 0.2 and 1.5T Correlation with Surgery. American Journal of Roentgenology, 174(4), pp. 1093–1097. 34. Cray, C., Rodriguez, M., Zaias, J., and Altman, N.H., 2009. Effects of Storage Temperature and Time on Clinical Biochemical Parameters from Rat Serum. Journal of the American Association for Laboratory Animal Science, 48(2), pp. 202–204. 35. Crema, M.D., Roemer, F.W., Marra, M.D., Burstein, D., Gold, G.E., Eckstein, F., Baum, T., Mosher, T.J., Carrino, J.A., and Guermazi, A., 2011. Articular Cartilage in the Knee: Current MR Imaging Techniques and Applications in Clinical Practice and Research. RadioGraphics, 31(1), pp. 37–61. 36. Dam, E.B., Loog, M., Christiansen, C., Byrjalsen, I., Folkesson, J., Nielsen, M., Qazi, A.A., Pettersen, P.C., Garnero, P., and Karsdal, M.A., 2009. Identification of Progressors in Osteoarthritis by Combining Biochemical and MRI-Based Markers. Arthritis Research & Therapy, 11(4), p. R115. 37. Démarteau, O., Pillet, L., Inaebnit, A., Borens, O., and Quinn, T.M., 2006. Biomechanical Characterization and in Vitro Mechanical Injury of Elderly Human Femoral Head Cartilage: Comparison to Adult Bovine Humeral Head Cartilage. Osteoarthritis and Cartilage, 14(6), pp. 589–596. 38. DePalma, A.A., and Gruson, K.I., 2012. Management of Cartilage Defects in the Shoulder. Current Reviews in Musculoskeletal Medicine, 5(3), pp. 254–262. 39. Deponti, D., Domenicucci, M., and Peretti, G., 2014. Articular Cartilage Morphology and Biomechanics. Journal of Orthopedics, 6(2), pp. 75–81. 40. Dieppe, P., Cushnaghan, J., Young, P., and Kirwan, J., 1993. Prediction of the Progression of Joint Space Narrowing in Osteoarthritis of the Knee by Bone Scintigraphy. Annals of the Rheumatic Diseases, 52(8), pp. 557–563. 41. Eapen, M., Zald, D.H., Gatenby, J.C., Ding, Z., and Gore, J.C., 2011. Using High-Resolution MR Imaging at 7T to Evaluate the Anatomy of the Midbrain Dopaminergic System. American Journal of Neuroradiology, 32(4), pp. 688–694. 42. Eckstein, F., and Glaser, C., 2004. Measuring Cartilage Morphology with Quantitative Magnetic Resonance Imaging. In: Seminars in musculoskeletal radiology, 8(4), pp. 329–353. 43. Eckstein, F., Sittek, H., Milz, S., Schulte, E., Kiefer, B., Reiser, M., and Putz, R., 1995. The Potential of Magnetic Resonance Imaging (MRI) for Quantifying Articular Cartilage Thickness-a Methodological Study. Clinical Biomechanics, 10(8), pp. 434–440. 44. Egloff, C., Hügle, T., and Valderrabano, V., 2012. Biomechanics and Pathomechanisms of Osteoarthritis. Swiss Medical Weekly, 142(w13583). 45. Ejbjerg, B.J., Narvestad, E., Jacobsen, S., Thomsen, H.S., and Ostergaard, M., 2005. Optimised, Low Cost, Low Field Dedicated Extremity MRI Is Highly Specific and Sensitive for Synovitis and Bone Erosions in Rheumatoid Arthritis Wrist and Finger Joints: Comparison with Conventional High Field MRI and Radiography. Annals of the Rheumatic Diseases, 64(9), pp. 1280–1287. 46. Espino, D.M., Shepherd, D.E., and Hukins, D.W., 2014. Viscoelastic Properties of Bovine Knee Joint Articular Cartilage: Dependency on Thickness and Loading Frequency. BMC Musculoskeletal Disorders, 15(1), p. 205. 47. Favero, M., Ramonda, R., Goldring, M.B., Goldring, S.R., and Punzi, L., 2015. Early Knee Osteoarthritis. RMD Open, 1(Suppl 1), p. e000062. 48. Felson, D.T., Gale, D.R., Gale, M.E., Niu, J., Hunter, D.J., Goggins, J., and Lavalley, M.P., 2005. Osteophytes and Progression of Knee Osteoarthritis. Rheumatology, 44(1), pp. 100–104. 49. Folkesson, J., Dam, E.B., Olsen, O.F., Pettersen, P.C., and Christiansen, C., 2007. Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach. IEEE Transactions on Medical Imaging, 26(1), pp. 106–115. 50. Fornari, E.D., Saillant, J., Obadan, I., Hu, C.H., and Elizabeth G. Matzkin, 2015. Effective Use of Magnetic Resonance Imaging in the Evaluation of Knee Pain. The Orthopaedic Journal, 16, pp. 50–58. 51. Fox, A.J.S., Bedi, A., and Rodeo, S.A., 2009. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health, 1(6), pp. 461–468. 52. Fox, J.A., Cole, B.J., Romeo, A.A., Meininger, A.K., Glenn, R.E., Bicos, J., Hayden, J.K., and Dorow, C.B., 2008. Articular Cartilage Thickness of the Humeral Head: An Anatomic Study. Orthopedics, 31(3), pp. 1–6. 53. Franke, O., Durst, K., Maier, V., Goken, M., Birkholz, T., Schneider, H., Hennig, F., and Gelse, K., 2007. Mechanical Properties of Hyaline and Repair Cartilage Studied by Nanoindentation. Acta Biomaterialia, 3(6), pp. 873–881. 54. Franz, T., Hasler, E.M., Hagg, R., Weiler, C., Jakob, R.P., and Mainil-Varlet, P., 2001. In Situ Compressive Stiffness, Biochemical Composition, and Structural Integrity of Articular Cartilage of the Human Knee Joint. Osteoarthritis and Cartilage, 9(6), pp. 582–592. 55. French, H.P., Galvin, R., Horgan, N.F., and Kenny, R.A., 2016. Prevalence and Burden of Osteoarthritis amongst Older People in Ireland: Findings from the Irish LongituDinal Study on Ageing (TILDA). European Journal of Public Health, 26(1), pp. 192–198. 56. Giannini, S., Buda, R., Caprio, F. Di, Agati, P., Bigi, A., de Pasquale, V., and Ruggeri, A., 2008. Effects of Freezing on the Biomechanical and Structural Properties of Human Posterior Tibial Tendons. International Orthopaedics, 32(2), pp. 145–151. 57. Goldsmith, A.A.J., Hayes, A., and Clift, S.E., 1996. Application of Finite Elements to the Stress Analysis of Articular Cartilage. Medical Engineering & Physics, 18(2), pp. 89–98. 58. Graichen, H., Jakob, J., von Eisenhart-Rothe, R., Englmeier, K.H., Reiser, M., and Eckstein, F., 2003. Validation of Cartilage Volume and Thickness Measurements in the Human Shoulder with Quantitative Magnetic Resonance Imaging. Osteoarthritis and Cartilage, 11(7), pp. 475–482. 59. Gregory, M.H., Capito, N., Kuroki, K., Stoker, A.M., Cook, J.L., and Sherman, S.L., 2012. A Review of Translational Animal Models for Knee Osteoarthritis. Arthritis, (ID 764621). 60. Grenier, S., M.Bhargava, M., and A.Torzili, P., 2014. An In Vitro Model for the Pathological Degradation of Articular Cartilage in Osteoarthritis. Journal of Biomechanics, 47(3), pp. 645–652. 61. Guidoni, G., Swain, M., and Jäger, I., 2010. Nanoindentation of Wet and Dry Compact Bone: Influence of Environment and Indenter Tip Geometry on the Indentation Modulus. Philosophical Magazine, 90(5), pp. 553–565. 62. Guilak, F., Ratcliffe, A., Lane, N., Rosenwasser, M.P., and Mow, V.C., 1994. Mechanical and Biochemical Changes in the Superficial Zone of Articular Cartilage in Canine Experimental Osteoarthritis. Journal of Orthopaedic Research, 12(4), pp. 474–484. 63. Halonen, K.S., Mononen, M.E., Jurvelin, J.S., Toyras, J., Salo, J., and Korhonen, R.K., 2014. Deformation of Articular Cartilage during Static Loading of a Knee Joint - Experimental and Finite Element Analysis. Journal of Biomechanics, 47(10), pp. 2467–2474. 64. Hani, A.F.M., Kumar, D., Malik, A.S., Ahmad, R.M.K.R., Razak, R., and Kiflie, A., 2015. Non-Invasive and in Vivo Assessment of Osteoarthritic Articular Cartilage: A Review on MRI Investigations. Rheumatology International, 35(1), pp. 1–16. 65. Hani, A.F.M., Malik, A.S., Kumar, D., Kamil, R., Razak, R., and Kiflie, A., 2011. Features and Mo Odalities for Assessing Early Knee Osteoarthritis. In: International Conference on Electrical Engineering and Informatics (ICEEI), p. 1–6 (IEEE). 66. Hargrave-Thomas, E.J., Thambyah, A., Mcglashan, S.R., and Broom, N.D., 2013. The Bovine Patella as a Model of Early Osteoarthritis. Journal of Anatomy, 223(6), pp. 651–664. 67. Haughton, V.M., Czervionke, A.A.R.L.F., Breger, R.K., Fisher, M.E., Papke, R.A., Hendrix, L.E., Strother, C.M., Turski, P.A., Williams, A.L., and Daniels, D.L., 1988. Sensitivity of Gd-DTPA-Enhanced MR Imaging of Benign Extraaxial Tumors. Radiology, 166(3), pp. 829–833. 68. Hayashi, D., Roemer, F.W., and Guermazi, A., 2012. Osteoarthritis Year 2011 in Review : Imaging in OA A Radiologists’ Perspective. Osteoarthritis and Cartilage, 20(3), pp. 207–214. 69. Hayes, W.C., and Mockros, L.F., 1972. A Mathematical Analysis Tests of Articular. Journal Biomechanics, 5, pp. 541–551. 70. Horng, A., Brun, E., Mittone, A., Gasilov, S., Weber, L., Geith, T., Adam-Neumair, S., Auweter, S.D., Bravin, A., Reiser, M.F., and Coan, P., 2014. Cartilage and Soft Tissue Imaging Using X-Rays. Investigative Radiology, . 71. Hua, X., Li, J., Wilcox, R.K., Fisher, J., and Jones, A.C., 2015. Geometric Parameterisation of Pelvic Bone and Cartilage in Contact Analysis of the Natural Hip : An Initial Study. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229(8), pp. 570–580. 72. Hwang, E., Carpenter, J.E., Hughes, R.E., and Palmer, M.L., 2014. Effects of Biceps Tension and Superior Humeral Head Translation on the Glenoid Labrum. Journal of Orthopaedic Research, 32(11), pp. 1424–1429. 73. Indrajit, I.K., and Verma, B.S., 2007. Digital Imaging in Radiology Practice : An Introduction to Few Fundamental Concepts. Indian Journal of Radiology and Imaging, 17(4), pp. 230–236. 74. Jaafar, Y.L., Juzaila, M., Latif, A., Hashim, N.H., Rafiq, M., and Kadir, A., 2016. The Effects Of Thickness on Biomechanical Behavior of Articular Cartilage : A Finite Element Analysis. In: ARPN Journal of Engineering and Applied Sciences, 11(8), pp. 5331–5335. 75. Jin, H., and Lewis, J.L., 2003. Determination of Poisson’s Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters. In: Bioengineering Conference, pp. 25–29. 76. Julkunen, P., Kiviranta, P., Wilson, W., Jurvelin, J.S., and Korhonen, R.K., 2007. Characterization of Articular Cartilage by Combining Microscopic Analysis with A Fibril-Reinforced Finite-Element Model. Journal of Biomechanics, 40(8), pp. 1862–1870. 77. Julkunen, P., Korhonen, R.K., Nissi, M.J., and Jurvelin, J.S., 2008. Mechanical Characterization of Articular Cartilage by Combining Magnetic Resonance Imaging and Finite-Element Analysis—a Potential Functional Imaging Technique. Physics in Medicine and Biology, 53(9), pp. 2425–2438. 78. Jung, H., Vangipuram, G., Fisher, M.B., Yang, G., Hsu, S., Bianchi, J., and Ronholdt, C., 2011. The Effects of Multiple Freeze – Thaw Cycles on the Biomechanical Properties of the Human Bone-Patellar Tendon-Bone Allograft. Journal of Orthopaedic Research, 29(8), pp. 1193–1198. 79. Juras, V., Bittsansky, M., Majdisova, Z., Szomolanyi, P., Sulzbacher, I., Gäbler, S., Stampfl, J., Schüller, G., and Trattnig, S., 2009. In Vitro Determination of Biomechanical Properties of Human Articular Cartilage in Osteoarthritis Using Multi-Parametric MRI. Journal of Magnetic Resonance, 197(1), pp. 40–47. 80. Juras, V., Zbyn, S., Mlynarik, V., Szomolanyi, P., Hager, B., Baer, P., Frollo, I., and Trattnig, S., 2016. The Compositional Difference between Ankle and Knee Cartilage Demonstrated by T2 Mapping at 7 Tesla MR. European Journal of Radiology, 85(4), pp. 771–777. 81. Jurvelin, J.S., Buschmann, M.D., and Hunziker, E.B., 2003. Mechanical Anisotropy of the Human Knee Articular Cartilage in Compression. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 217(3), pp. 215–219. 82. Jurvelin, J.S., Rasanen, T., Kolmonen, P., and Lyyra, T., 1995. Comparison of Optical, Needle Probe and Ultrasonic Techniques for the Measurement of Articular Cartilage Thickness. Journal of Biomechanics, 28(2), pp. 231–235. 83. Karpie, J.C., and Chu, C.R., 2006. Imaging of Articular Cartilage. Operative Techniques in Orthopaedics, 16(4), pp. 279–285. 84. Kazemi, M., Dabiri, Y., and Li, L.P., 2013. Recent Advances in Computational Mechanics of the Human Knee Joint. Computational and Mathematical Methods in Medicine. 85. Keenan, K.E., Pal, S., Lindsey, D.P., Besier, T.F., and Beaupre, G.S., 2013. A Viscoelastic Constitutive Model Can Accurately Represent Entire Creep Indentation Tests of Human Patella Cartilage. Journal of Applied Biomechanics, 29(3), pp. 292–302. 86. Kerchner, G.A., Hess, C.P., Hammond-Rosenbluth, K.E., Xu, D., Rabinovici, G.D., Kelley, D.A.C., Vigneron, D.B., Nelson, S.J., and Miller, B.L., 2010. Hippocampal CA1 Apical Neuropil Atrophy in Mild Alzheimer Disease Visualized with 7-T MRI. Neurology, 75(15), pp. 1381–1387. 87. Kiapour, A., Kiapour, A.M., Kaul, V., Quatman, C.E., Wordeman, S.C., and Hewett, T.E., 2014. Finite Element Model of the Knee for Investigation of Injury Mechanisms : Development and Validation. Journal of Biomechanical Engineering, 136(1), p. p011002. 88. Kijowski, R., 2010. Clinical Cartilage Imaging of the Knee and Hip Joints. Musculoskeletal Imaging, 195, pp. 618–628. 89. Kijowski, R., Blankenbaker, D., Stanton, P., Fine, J., and Smet, A. De, 2006. Arthroscopic Validation of Radiographic Grading Scales of Osteoarthritis of the Tibiofemoral Joint. AJR AM J Roentgenol, 187(3), pp. 794–799. 90. Kinns, J., and Mair, T.S., 2005. Use of Magnetic Resonance Imaging to Assess Soft Tissue Damage in the Foot Following Penetrating Injury in 3 Horses. Equine Veterinary Education, 17(2), pp. 69–73. 91. Kjær, L., Ring, P., Thomsen, C., and Henriksen, O., 1995. Texture Analysis in Quantitative MR Imaging. Acta Radiologica, 36(2), pp. 127–135. 92. Kladny, B., Bail, H., Swoboda, B., Schiwy-Bochat, H., Beyer, W.F., and Weseloh, G., 1996. Cartilage Thickness Measurement in Magnetic Resonance Imaging. Osteoarthritis and Cartilage, 4(3), pp. 181–186. 93. Knecht, S., Vanwanseele, B., and Stüssi, E., 2006. A Review on the Mechanical Quality of Articular Cartilage – Implications for the Diagnosis of Osteoarthritis. Clinical Biomechanics, 21(10), pp. 999–1012. 94. Korhonen, R.., Laasanen, M.., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.., and Jurvelin, J.., 2002. Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation. Journal of Biomechanics, 35(7), pp. 903–909. 95. Kornaat, P.R., Bloem, J.L., Ceulemans, R.Y.T., Riyazi, N., Rosendaal, F.R., Nelissen, R.G., Carter, W.O., Graverand, M.P.H. Le, and Kloppenburg, M., 2006. Osteoarthritis of the Knee : Association between Clinical Features and MR Imaging. 239(3), pp. 811–817. 96. Kotti, M., Duffell, L.D., Faisal, A.A., and Mcgregor, A.H., 2014. The Complexity of Human Walking : A Knee Osteoarthritis Study. PLoS ONE, 9(9), p. e 107325. 97. Kraff, O., Fischer, A., Nagel, A.M., Ladd, M.E., and Christoph, M., 2015. MRI at 7 Tesla and Above : Demonstrated and Potential Capabilities. Journal of Magnetic Resonance Imaging, 41, pp. 13–33. 98. Kumar, D., Fadzil, A., Hani, M., Malik, A.S., Kamil, R., Razak, R., and Kiflie, A., 2011. Development of a Non-Invasive Diagnostic Tool for Early Detection of Knee Osteoarhritis. In: National Postgraduate Conference (NPC) IEEE, pp. 1–6. 99. Kurkijärvi, J.E., Nissi, M.J., Kiviranta, I., Jurvelin, J.S., and Nieminen, M.T., 2004. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) and T2 Characteristics of Human Knee Articular Cartilage: Topographical Variation and Relationships to Mechanical Properties. Magnetic Resonance in Medicine, 52(1), pp. 41–46. 100. Kurrat, H.J., and Oberlander, W., 1978. The Thickness of the Cartilage in the Hip Joint. Journal of Anatomy, 126(1), pp. 145–155. 101. Latif, M.J.A., Hashim, N.H., Ramlan, R., Mahmud, J., Jumahat, A., and Kadir, M.R.A., 2013. The Effects of Surface Curvature on Cartilage Behaviour in Indentation Test: A Finite Element Study. Procedia Engineering, 68, pp. 109–115. 102. Leung, Y.Y., Pua, Y.H., and Thumboo, J., 2013. A Perspective on Osteoarthritis Research in Singapore. In: Proceedings of Singapore Healthcare, 22(1), pp. 31–39. 103. Liess, C., Lüsse, S., Karger, N., Heller, M., and Glüer, C.C., 2002. Detection of Changes in Cartilage Water Content Using MRI T2-Mapping in Vivo. Osteoarthritis and Cartilage, 10(12), pp. 907–913. 104. Little, C.B., and Smith, M.M., 2008. Animal Models of Osteoarthritis. Current Rheumatology Reviews, 4(3), pp. 175–182. 105. Lu, W., Yang, J., Chen, S., Zhu, Y., and Zhu, C., 2015. Abnormal Patella Height Based on Insall-Salvati Ratio and Its Correlation with Patellar Cartilage Lesions : An Extremity-Dedicated Low-Field Magnetic Resonance Imaging Analysis of 1703 Chinese Cases. Scandinavian Journal of Surgery, 105(3), pp. 197–203. 106. Mak, A.F., 1986. Biphasic Indentation of Articular Cartilage- I. Theoretical Analysis. Journal of Biomechanics, 20(7), pp. 703–714. 107. Malda, J., de Grauw, J.C., Benders, K.E.M., Kik, M.J.L., van de Lest, C.H.A., Creemers, L.B., Dhert, W.J.A., and van Weeren, P.R., 2013. Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass. PLoS ONE, 8(2), p. e57683. 108. Malda, J., Hoope, W. ten, Schuurman, W., Osch, G.J.V.M. van, Weeren, P.R. van, and Dhert, W.J.A., 2010. Localization of the Potential Zonal Marker Clusterin in Native Cartilage and in Tissue-Engineered Constructs. Tissue Engineering Part A, 16(3), pp. 897–904. 109. Mansour, J.M., 2004. Biomechanics of Cartilage. Kinesiology: The Mechanics and Pathomechanics of Human Movement, pp. 66–79. 110. Mars, M., Tbini, Z., Bouaziz, M., and Ladeb, M.F., 2014. Parametric Maps of the Knee Cartilage. In: International Image Processing Applications and Systems Conference (IPAS) 2014, p. First International 1-5 (IEEE). 111. Martí-Bonmatí, L., Sanz, R., Alberich, Á., and Belloch, E., 2009. New Imaging Techniques in the Evaluation of Joint Cartilage. Reumatología Clínica (English Edition), 5(6), pp. 285–288. 112. Matsiko, A., Levingstone, T.J., and O’Brien, F.J., 2013. Advanced Strategies for Articular Cartilage Defect Repair. Materials, 6(2), pp. 637–668. 113. Ménard, A., Soulisse, C., Raymond, P., and Villemure, I., 2014. Effect of Cold Storage and Freezing on the Biomechanical Properties of Swine Growth Plate Expiants. Journal of Biomechanical Engineerinf, 136(4), p. 44502. 114. Moller, B., Bonel, H., Rotzetter, M., Villiger, P.M., and Ziswiler, H.-R., 2009. Measuring Finger Joint Cartilage by Ultrasound as a Promising Alternative to Conventional Radiograph Imaging. Arthritis Care & Research, 61(4), pp. 435–441. 115. Moore, A., and Burris, D.L., 2015. Tribological and Material Properties for Cartilage of and Throughout the Bovine Stifle Support for the Altered Joint Kinematics Hypothesis of Osteoarthritis. Osteoarthritis and Cartilage, 23(1), pp. 161–169. 116. Moran, C.J., Ramesh, A., Brama, P.A.J., Byrne, J.M.O., Brien, F.J.O., and Levingstone, T.J., 2016. The Benefits and Limitations of Animal Models for Translational Research in Cartilage Repair. Journal of Experimental Orthopaedics, 3(1), p. 1. 117. Mow, V.C., and Gibbs, M.C., 1989. Biphasic Indentation of Articular Cartilage - II. A Numerical Algorithm and an Experimental Study. Journal of Biomechanics, 22(8–9), pp. 853–861. 118. Mow, V.C., and Huiskes, R., 2005. Basic Orthopaedic Biomechanics and Mechano-Biology, Third Edit ed., Philadelphia: Lippincott Williams & Wilkins. 119. Mukaka, M.M., 2012. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Medical Journal, 24(3), pp. 69–71. 120. Murray, K.J., and Michael, F.A., 2015. Leg Length Discrepancy and Osteoarthritis in the Knee , Hip and Lumbar Spine. The Journal of the Canadian Chiropractic Association, 59(3), p. 226. 121. Murray, R.C., Mair, T.S., Sherlock, C.E., and Blunden, A.S., 2009. Comparison of High-Field and Low-Field Magnetic Resonance Images of Cadaver Limbs of Horses. Veterinary Record, 165(10), pp. 281–288. 122. Naraghi, A.M., White, L.M., Tomlinson, G., and Keystone, E.C., 2009. Comparison of 1.0 T Extremity MR and 1.5 T Conventional High-Field Strength MR in Patients with Rheumatoid Arthritis. Radiology, 251(3), pp. 829–837. 123. Naredo, E., Acebes, C., Moller, I., Canillas, F., de Agustin, J.J., de Miguel, E., Filippucci, E., Iagnocco, A., Moragues, C., Tuneu, R., Uson, J., Garrido, J., and Saenz-Navarro, E.D.-B.I., 2009. Ultrasound Validity in the Measurement of Knee Cartilage Thickness. Annals of the Rheumatic Diseases, 68(8), pp. 1322–1327. 124. Nations, U., 2015. World Population Ageing 2015. 125. Neogi, T., Felson, D., Niu, J., Nevitt, M., Lewis, C.E., Aliabadi, P., Sack, B., Torner, J., Bradley, L., and Zhang, Y., 2009. Association between Radiographic Features of Knee Osteoarthritis and Pain : Results from Two Cohort Studies. BMJ, 339(b2844). 126. Nieminen, M.T., Toyras, J., Laasanen, M.S., Rieppo, J., Silvennoinen, J., Helminen, H.J., and Jurvelin, J.S., 2001. MRI Quantitation of Proteoglycans Cartilage Stifness in Bovine Humeral Head. In: Read at the Annual Meeting of the Orthopaedic Research Society, pp. 25–28. 127. Nieminen, M.T., Töyräs, J., Laasanen, M.S., Silvennoinen, J., Helminen, H.J., and Jurvelin, J.S., 2004. Prediction of Biomechanical Properties of Articular Cartilage with Quantitative Magnetic Resonance Imaging. Journal of Biomechanics, 37(3), pp. 321–328. 128. Nissi, M.J., Rieppo, J., Töyräs, J., Laasanen, M.S., Kiviranta, I., Nieminen, M.T., and Jurvelin, J.S., 2007. Estimation of Mechanical Properties of Articular Cartilage with MRI – dGEMRIC, T2 and T1 Imaging in Different Species with Variable Stages of Maturation. Osteoarthritis and Cartilage, 15(10), pp. 1141–1148. 129. Nissi, M.J., Töyräs, J., Laasanen, M.S., Rieppo, J., Saarakkala, S., Lappalainen, R., Jurvelin, J.S., and Nieminen, M.T., 2004. Proteoglycan and Collagen Sensitive MRI Evaluation of Normal and Degenerated Articular Cartilage. Journal of Orthopaedic Research, 22(3), pp. 557–564. 130. Nozaki, T., Kaneko, Y., Yu, H.J., Kaneshiro, K., Schwarzkopf, R., Hara, T., and Yoshioka, H., 2016. T1rho Mapping of Entire Femoral Cartilage Using Depth- and Angle-Dependent Analysis. European Radiology, 26(6), pp. 1952–1962. 131. Ogbole, G.I., Adeleye, A.O., Adeyinka, A.O., and Ogunseyinde, O.A., 2012. Magnetic Resonance Imaging : Clinical Experience with an Open Low-Field-Strength Scanner in a Resource Challenged African State. Journal of Neurosciences in Rural Practice, 3(2), pp. 137–144. 132. Onan, O.A., Hipp, J.A., and Heggeness, M.H., 1998. Use of Computed Tomography Image Processing for Mapping of Human Cervical Facet Surface Geometry. Medical Engineerinf & Physics, 20(1), pp. 77–81. 133. Palmer, A.W., Guldberg, R.E., and Levenston, M.E., 2006. Analysis of Cartilage Matrix Fixed Charge Density and Three-Dimensional Morphology via Contrast-Enhanced Microcomputed Tomography. In: Proceedings of the National Academy of Sciences, 103(51), pp. 19255–19260. 134. Park, S., Krishnan, R., T.Hung, C., and Ateshian, G.A., 2003. In Situ Measurement Of The Dynamic Modulus Of Bovine Humeral Head Articular Cartilage Under Physiological Contact Loading Conditions. In: ASME Summer Bioengineering Conference, pp. 1207–1208. 135. Paunipagar, B., and Rasalkar, D., 2014. Imaging of Articular Cartilage. Indian Journal of Radiology and Imaging, 24(3), p. 237. 136. Pawaskar, S.S., 2006. Contact Mechanics Modelling of Articular Cartilage and Applications. 137. Pawaskar, S.S., Fisher, J., and Jin, Z., 2010. Robust and General Method for Determining Surface Fluid Flow Boundary Conditions in Articular Cartilage Contact Mechanics Modeling. Journal of Biomechanical Engineering, 132(3), p. 31001. 138. Pearle, A.D., Warren, R.F., and Rodeo, S.A., 2005. Basic Science of Articular Cartilage and Osteoarthritis. Clinics in Sports Medicine, 24(1), pp. 1–12. 139. Périé, D., 2007. MRI Techniques for Describing Alterations in Material Properties of Cartilage and Intervertebral Disc Tissue. Current Medical Imaging Reviews, 3(2), pp. 79–90. 140. Potter, H.G., and Foo, L.F., 2006. Magnetic Resonance Imaging of Articular Cartilage: Trauma, Degeneration, and Repair. The American Journal of Sports Medicine, 34(4), pp. 661–677. 141. Potter, H.G., and Koff, M.F., 2012. MR Imaging Tools to Assess Cartilage and Joint Structures. HSS Journal, 8(1), pp. 29–32. 142. Pownder, S.L., Shah, P.H., Potter, H.G., and Koff, M.F., 2015. The Effect of Freeze-Thawing on Magnetic Resonance Imaging T2* of Freshly Harvested Bovine Patellar Tendon. Quantitative Imaging in Medicine and Surgery, 5(3), pp. 368–73. 143. Qazi, A.A., Folkesson, J., Pettersen, P.C., Karsdal, M.A., Christiansen, C., and Dam, E.B., 2007. Separation of Healthy and Early Osteoarthritis by Automatic Quantification of Cartilage Homogeneity. Osteoarthritis and Cartilage, 15(10), pp. 1199–1206. 144. Qu, C., Hirviniemi, M., Tiitu, V., S.Jurvelin, J., Toyras, J., and J.Lammi, M., 2014. Effects of Freeze-Thaw Cycle with and without Proteolysis Inhibitors and Cryopreservant on the Biochemical and Biomechanical Properties of Articular Cartilage. Cartilage, 5(2), pp. 97–106. 145. Raj, N.B., Saha, S., Hashim, H.A., and Saha, S., 2014. Proprioception and Exercises in Individuals Suffering from Osteoarthrosis of Knee Joint : A Meta Analytic Review. Journal of Physical Activity, Sports & Exercise, 2(1), pp. 1–6. 146. Raj, N.B., Saha, S., Shokri, A. Bin, Saha, S., Sadagatullah, A.N., Hashim, H.A., Ismail, M.S., and Choo Morley, L., 2016. Isokinetic Exercise Training on Improvement in Muscular Strength in Knee Osteoarthritis- A Meta-Analytic Review. International Journal of Pharma and Bio Sciences, 7(3), pp. 263–274. 147. Ralphs, J.R., and Benjamin, M., 1994. The Joint Capsule: Structure, Composition, Ageing and Disease. Journal of Anatomy, 184(3), pp. 503–509. 148. Ranawat, A.S., Vidal, A.F., Chen, C.T., Zelken, J.A., Turner, A.S., and III, R.J.W., 2008. Material Properties of Fresh Cold-Stored Allografts for Osteochondral Defects at 1 Year. Clinical Orthopaedics and Related Research, 466(8), pp. 1826–1836. 149. Razi, T., Niknami, M., and Alavi Ghazani, F., 2014. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. Journal of Dental Research, Dental Clinics, Dental Prospects, 8(2), pp. 107–110. 150. Reichenbach, S., Yang, M., Eckstein, F., Niu, J., Hunter, D.J., McLennan, C.E., Guermazi, A., Roemer, F., Hudelmaier, M., Aliabadi, P., and Felson, D.T., 2010. Does Cartilage Volume or Thickness Distinguish Knees with and without Mild Radiographic Osteoarthritis? The Framingham Study. Annals of the Rheumatic Diseases, 69(1), pp. 143–149. 151. Richard, F., Villars, M., and Thibaud, S., 2013. Viscoelastic Modeling and Quantitative Experimental Characterization of Normal and Osteoarthritic Human Articular Cartilage Using Indentation. Journal of the Mechanical Behavior of Biomedical Materials, 24, pp. 41–52. 152. Richmond, J., Hunter, D., Irrgang, J., Jones, M.H., Levy, B., Marx, R., Snyder-Mackler, L., Watters III, W.C., Haralson III, R.H., Turkelson, C.M., Wies, J.L., Boyer, K.M., Anderson, S., St Andre, J., Sluka, P., and McGowan, R., 2009. Treatment of Osteoarthritis of the Knee (Nonarthroplasty). The Journal of the American Academy of Orthopaedic Surgeons, 17(9), pp. 591–600. 153. Roemer, F.W., Lynch, J.A., Niu, J., Zhang, Y., Crema, M.D., Tolstykh, I., El-Khoury, G.Y., Felson, D.T., Lewis, C.E., Nevitt, M.C., and Guermazi, A., 2010. A Comparison of Dedicated 1.0T Extremity MRI vs Large-Bore 1.5 T MRI for Semiquantitative Whole Organ Assessment of Osteoarthritis: The MOST Study. Osteoarthritis Cartilage, 18(2), pp. 168–174. 154. Roemhildt, M.L., Caughlin, K.M., Peura, G.D., Fleming, B.C., and Beynnon, B.D., 2006. Material Properties of Articular Cartilage in the Rabbit Tibial Plateau. Journal of Biomechanical, 39(12), pp. 2331–2337. 155. Rohde, R.S., Studer, R.K., and Chu, C.R., 2004. Mini-Pig Fresh Osteochondral Allografts Deteriorate after 1 Week of Cold Storage. Clinical Orthopaedics and Related Research, 427, pp. 226–233. 156. Saad, N.M., Bakar, S.A.R.S.A., Muda, A.S., and Mokji, M.M., 2015. Review of Brain Lesion Detection and Classification Using Neuroimaging. Jurnal Teknologi, 74(6), pp. 73–85. 157. Saarakkala, S., Laasanen, M.., Jurvelin, J.., Törrönen, K., Lammi, M.., Lappalainen, R., and Töyräs, J., 2003. Ultrasound Indentation of Normal and Spontaneously Degenerated Bovine Articular Cartilage. Osteoarthritis and Cartilage, 11(9), pp. 697–705. 158. Sanchez-Adams, J., Leddy, H.A., McNulty, A.L., O’Conor, C.J., and Guilak, F., 2014. The Mechanobiology of Articular Cartilage: Bearing the Burden of Osteoarthritis. Current Rheumatology Reports, 16(10), pp. 1–9. 159. Schumacher, B.L., Block, J.A., Schmid, T.M., Aydelotte, M.B., and Kuettner, K.E., 1994. A Novel Proteoglycan Synthesized and Secreted by Chondrocytes of the Superficial Zone of Articular Cartilage. Archives of Biochemistry and Biophysics, 311(1), pp. 144–152. 160. Shepherd, D., and Seedhom, B., 1999. Thickness of Human Articular Cartilage in Joints of the Lower Limb. Annals of the Rheumatic Diseases, 58(1), pp. 27–34. 161. Sherlock, C.E., Kinns, J., and Mair, T.S., 2007. Evaluation of Foot Pain in the Standing Horse by Magnetic Resonance Imaging. The Veterinary Record, 161(22), pp. 739–744. 162. Sniekers, Y.H., Intema, F., Lafeber, F.P.J.G., Van, G.J.V.M., Leeuwen, J.P.T.M. Van, Weinans, H., and Mastbergen, S.C., 2008. A Role for Subchondral Bone Changes in the Process of Osteoarthritis ; A Micro-CT Study of Two Canine Models. BMC Musculoskeletal Disorders, 9(1), p. 20. 163. Spannow, A.H., Stenboeg, E., Pfeiffer-jensen, M., and Herlin, T., 2007. Ultrasound Measurement of Joint Cartilage Thickness in Large and Observer Variability. Pediatric Rheumatology, 5(1), p. 3. 164. Szarko, M., Muldrew, K., and Bertram, J.E., 2010. Freeze-Thaw Treatment Effects on the Dynamic Mechanical Properties of Articular Cartilage. BMC Musculoskeletal Disorders, 11(1), p. 231. 165. Szarko, M., and Xia, Y., 2012. Direct Visualisation of the Depth-Dependent Mechanical Properties of Full-Thickness Articular Cartilage. Open Journal of Orthopedics, 2, pp. 34–39. 166. Taouli, B., Zaim, S., Peterfy, C.G., Lynch, J.A., Stork, A., Guermazi, A., Fan, B., Fye, K.H., and Genant, H.K., 2004. Rheumatoid Arthritis of the Hand and Wrist : Comparison of Three Imaging Techniques. American Journal of Roentgenelogy, 182(4), pp. 937–943. 167. Taylor, S.D., Tsiridis, E., Ingham, E., Jin, Z., Fisher, J., and Williams, S., 2011. Comparison of Human and Animal Femoral Head Chondral Properties and Geometries. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(1), pp. 55–62. 168. Teeple, E., Jay, G.D., Elsaid, K.A., and Fleming, B.C., 2013. Animal Models of Osteoarthritis: Challenges of Model Selection and Analysis. The AAPS Journal, 15(2), pp. 438–446. 169. Thibbotuwawa, N., Li, T., and Gu, Y.T., 2014. Porohyperelastic Finite Element Model for the Kangaroo Humeral Head Cartilage Based on Experimental Study and the Consolidation Theory. In: Proceedings of the International Conference on Computational Methods, ScienTech,. 170. Thomas, V.J., Jimenez, S.A., Brighton, C.T., and Brown, N., 1984. Sequential Changes in the Mechanical Properties of Viable Articular Cartilage Stored. Journal of Orthpaedic Research, 2(1), pp. 55–60. 171. Thysen, S., Luyten, F.P., and Lories, R.J.U., 2015. Targets , Models and Challenges in Osteoarthritis Research. Disease Models & Mechanisms, 8(1), pp. 17–30. 172. van Tiel, J., Bron, E.E., Tiderius, C.J., Bos, P.K., Reijman, M., Klein, S., Verhaar, J.A.N., Krestin, G.P., Weinans, H., Kotek, G., and Oei, E.H.G., 2013. Reproducibility of 3D Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) of the Knee at 3.0 T in Patients with Early Stage Osteoarthritis. European Radiology, 23(2), pp. 496–504. 173. Toyras, J., Lyyra-Laitinen, T., Niinimaski, M., Lindgren, R., Nieminen, M.T., Kiviranta, I., and Jurvelin, J.S., 2001. Estimation of the Young’s Modulus of Articular Cartilage Using an Arthoscopic Indentation Instrument and Ultrasonic Measurement of Tissue Thickness. Journal of Biomechanics, 34(2), pp. 251–256. 174. Treppo, S., Koepp, S., Quan, E.C., Cole, A.A., Kuettner, K.E., and Grodzinsky, A.J., 1999. Comparison of Biomechanical and Biochemical Properties of Cartilage from Human Knee and Ankle Pairs. Journal of Orthopaedic Research, 18(5), pp. 739–748. 175. Wan, L.Q., Guo, X.E., and Mow, V.C., 2010. A Triphasic Orthotropic Laminate Model for Cartilage Curling Behavior: Fixed Charge Density vs Mechanical Properties Inhomgeneity. Journal of Biomechanical Engineering, 132(2), p. 24504. 176. Wang, C.C.-B., Chahine, N.O., Hung, C.T., and Ateshian, G.A., 2003. Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression. Journal Biomechanics, 36(3), pp. 339–353. 177. Wang, Y., Wluka, A.E., Jones, G., Ding, C., and Cicuttini, F.M., 2012. Use Magnetic Resonance Imaging to Assess Articular Cartilage. Therapeutic Advances in Musculoskeletal Disease, 4(2), pp. 77–97. 178. Warner, M.D., Taylor, W.R., and Clift, S.E., 2001. Finite Element Biphasic Indentation of Cartilage: A Comparison of Experimental Indenter and Physiological Contact Geometries. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 215(5), pp. 487–496. 179. Wayne, J.S., Kraft, K.A., Shields, K.J., Yin, C., Owen, J.R., and Disler, D.G., 2003. MR Imaging of Normal and Matrix-Depleted Cartilage: Correlation with Biomechanical Function and Biochemical Composition. Radiology, 228(2), pp. 493–499. 180. Williams, T.G., Holmes, A.P., Bowes, M., Vincent, G., Waterton, J.C., Maciewicz, R.A., and Taylor, C.J., 2010. Measurement and Visualisation of Focal Cartilage Thickness Change by MRI in a Study of Knee Osteoarthritis Using a Novel Image Analysis Tool. The British Journal of Radiology, 83, pp. 940–948. 181. Willing, R., Lalone, E.A., King, G.J.W., and Johnson, J.A., 2012. Comparing Two Constitutive Material Models of Cartilage for Hemiarthroplasty Articular Contact Mechanics Using Computational Analyses. In: ORS 2012 Annual Meeting, (1249). 182. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., and Huiskes, R., 2004. Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study. Journal of Biomechanics, 37(3), pp. 357–366. 183. Woertler, K., Strothmann, M., Tombach, B., and Reimer, P., 2000. Detection of Articular Cartilage Lesions: Experimental Evaluation of Low- and High-Field-Strength MR Imaging at 0.18 and 1.0 T. Journal of Magnetic Resonance Imaging, 11(6), pp. 678–685. 184. Zhalniarovich, Y., Adamiak, Z., Głodek, J., Przyborowska, P., and Holak, P., 2014. Comparison of High Resolution Gradient Echo, XBONE T1, XBONE T2, Spin Echo T1 and 3D SST1 Magnetic Resonance Imaging Sequences for Imagining the Canine Elbow. Polish Journal of Veterinary Sciences, 17(4), pp. 587–591.