Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand

Extracting hand grip force and wrist angle information from forearm electromyogram (EMG) signals is useful to be used as an inputs for the control of cybernetic prostheses or robotic hand. The information relating handgrip force and wrist position to forearm muscle activity is important as control a...

Full description

Saved in:
Bibliographic Details
Main Author: Norizan, Muhammad Alif
Format: Thesis
Language:English
English
Published: 2017
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/20911/1/Relationship%20investigation%20of%20handgrip%20forces%20with%20varied%20wrist%20angles%20using%20forearm%20EMG%20for%20bionic%20hand.pdf
http://eprints.utem.edu.my/id/eprint/20911/2/Relationship%20investigation%20of%20handgrip%20forces%20with%20varied%20wrist%20angles%20using%20forearm%20EMG%20for%20bionic%20hand.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.20911
record_format uketd_dc
spelling my-utem-ep.209112022-12-29T11:10:15Z Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand 2017 Norizan, Muhammad Alif T Technology (General) TJ Mechanical engineering and machinery Extracting hand grip force and wrist angle information from forearm electromyogram (EMG) signals is useful to be used as an inputs for the control of cybernetic prostheses or robotic hand. The information relating handgrip force and wrist position to forearm muscle activity is important as control algorithm for controlling the prostheses or robotic hand gripping force. By investigating the relationship between forearm EMG and hand grip force/wrist angles, the prostheses or robotic hand can be controlled in a manner that is customized to an amputee's intent. In this research study, a signal processing system which consists of an electronic conditioning circuit to measure and process raw EMG signals into linear enveloped EMG signal and software to record and process the EMG signals were developed. Each circuit development stage is described in detail so that this research can be easily produced by others for future work and improvements. Experimental training and testing datasets from five subjects were collected to investigate the relationship between forearm EMG,hand grip force and wrist angle simultaneously. The wrist angles set for this research is 60,90° and 120 ° while the forces is set at 5%,15%,25% and 35%MVC.At the beginning, 100%/MVC were done by each subjects for the normalization of EMG signal Neural Network were used to represents the relationship and to estimate handgrip force and wrist angle from the EMG signal. The performance of the networks were indicated by Mean Square Error (MSE) and Mean Absolute Error (MAE) values. The results from neural network training shows good accuracy with low MSE (<= 0.0000001) and MAE(<0.2) value. The data obtained from the experiment has been analyzed and is useful, low-cost method to control a prostheses or robotic hand. 2017 Thesis http://eprints.utem.edu.my/id/eprint/20911/ http://eprints.utem.edu.my/id/eprint/20911/1/Relationship%20investigation%20of%20handgrip%20forces%20with%20varied%20wrist%20angles%20using%20forearm%20EMG%20for%20bionic%20hand.pdf text en public http://eprints.utem.edu.my/id/eprint/20911/2/Relationship%20investigation%20of%20handgrip%20forces%20with%20varied%20wrist%20angles%20using%20forearm%20EMG%20for%20bionic%20hand.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=107604 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Electrical Engineering Ali @ Ibrahim, Fariz
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Ali @ Ibrahim, Fariz
topic T Technology (General)
TJ Mechanical engineering and machinery
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Norizan, Muhammad Alif
Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand
description Extracting hand grip force and wrist angle information from forearm electromyogram (EMG) signals is useful to be used as an inputs for the control of cybernetic prostheses or robotic hand. The information relating handgrip force and wrist position to forearm muscle activity is important as control algorithm for controlling the prostheses or robotic hand gripping force. By investigating the relationship between forearm EMG and hand grip force/wrist angles, the prostheses or robotic hand can be controlled in a manner that is customized to an amputee's intent. In this research study, a signal processing system which consists of an electronic conditioning circuit to measure and process raw EMG signals into linear enveloped EMG signal and software to record and process the EMG signals were developed. Each circuit development stage is described in detail so that this research can be easily produced by others for future work and improvements. Experimental training and testing datasets from five subjects were collected to investigate the relationship between forearm EMG,hand grip force and wrist angle simultaneously. The wrist angles set for this research is 60,90° and 120 ° while the forces is set at 5%,15%,25% and 35%MVC.At the beginning, 100%/MVC were done by each subjects for the normalization of EMG signal Neural Network were used to represents the relationship and to estimate handgrip force and wrist angle from the EMG signal. The performance of the networks were indicated by Mean Square Error (MSE) and Mean Absolute Error (MAE) values. The results from neural network training shows good accuracy with low MSE (<= 0.0000001) and MAE(<0.2) value. The data obtained from the experiment has been analyzed and is useful, low-cost method to control a prostheses or robotic hand.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Norizan, Muhammad Alif
author_facet Norizan, Muhammad Alif
author_sort Norizan, Muhammad Alif
title Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand
title_short Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand
title_full Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand
title_fullStr Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand
title_full_unstemmed Relationship investigation of handgrip forces with varied wrist angles using forearm EMG for bionic hand
title_sort relationship investigation of handgrip forces with varied wrist angles using forearm emg for bionic hand
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Electrical Engineering
publishDate 2017
url http://eprints.utem.edu.my/id/eprint/20911/1/Relationship%20investigation%20of%20handgrip%20forces%20with%20varied%20wrist%20angles%20using%20forearm%20EMG%20for%20bionic%20hand.pdf
http://eprints.utem.edu.my/id/eprint/20911/2/Relationship%20investigation%20of%20handgrip%20forces%20with%20varied%20wrist%20angles%20using%20forearm%20EMG%20for%20bionic%20hand.pdf
_version_ 1776103111623966720