Statistical texture representation for wood defect image classification using local binary pattern variants
Extensive research has been done on the automation of wood defect detection, to improve the quality of wood products, reduce human labour errors, and increase sales and production, for the wood industry. Our study extends previous work on the automated inspection of wood to include Malaysian wood sp...
محفوظ في:
المؤلف الرئيسي: | Rahiddin, Rahillda Nadhirah Norizzaty |
---|---|
التنسيق: | أطروحة |
اللغة: | English English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utem.edu.my/id/eprint/26000/1/Statistical%20texture%20representation%20for%20wood%20defect%20image%20classification%20using%20local%20binary%20pattern%20variants.pdf http://eprints.utem.edu.my/id/eprint/26000/2/Statistical%20texture%20representation%20for%20wood%20defect%20image%20classification%20using%20local%20binary%20pattern%20variants.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Design of an intelligent wood recognition system based on local binary pattern
بواسطة: Ashghani, Maryam Nasirzadeh
منشور في: (2010) -
A new feature-based wavelet completed local ternary pattern (FEAT-WCLTP) for texture and medical image classification
بواسطة: Shamaileh, Abeer Moh'd Salem
منشور في: (2019) -
Wood defect detection and classification using deep learning /
بواسطة: Yap, Yi Ren
منشور في: (2019) -
Texture wood species classification using improved-basic grey level aura matrices /
بواسطة: Mohd Iz`aan Paiz Zamri
منشور في: (2016) -
Fuzzy vessels clustering and statistical features for tropical wood classification /
بواسطة: Imanurfatiehah Ibrahim
منشور في: (2017)