The effect of vortex trap on helicopter blade lift

The 5-seater Aerospatiale AS350B helicopter has been chosen in this analysis in order to investigate the capabilities of the vortex trap in increasing the helicopter blade lift. Blade Element Theory (BET) was applied to scrutinize the lift force and angle of attack distribution along the helicopt...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yaakub, Mohd Fauzi
التنسيق: أطروحة
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://eprints.uthm.edu.my/2694/1/24p%20MOHD%20FAUZI%20YAAKUB.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my-uthm-ep.2694
record_format uketd_dc
spelling my-uthm-ep.26942022-02-03T01:51:56Z The effect of vortex trap on helicopter blade lift 2011-11 Yaakub, Mohd Fauzi TL Motor vehicles. Aeronautics. Astronautics TL500-777 Aeronautics. Aeronautical engineering The 5-seater Aerospatiale AS350B helicopter has been chosen in this analysis in order to investigate the capabilities of the vortex trap in increasing the helicopter blade lift. Blade Element Theory (BET) was applied to scrutinize the lift force and angle of attack distribution along the helicopter blade. From BET, the retreating blade must operate at a higher coefficient of lift for the purpose to balance the lift force on both sides of the rotor. In the process of designing and analyzing the grooyer, , commercial CFD, Fluent 6.3 and pre-processor Gambit were utilised in order to investigate the effect of groove which was applied on the upper surface of the helicopter airfoil. The Shear-Stress Transport (SST) k - o turbulence model was utilized in this analysis because of its capability in producing the flow inside the groove and the ability on predicting the separation of the airfoil. The mesh sensitivity analysis had also been accounted in the numerical study. The optimization of the groove was done by analyzing the numbers and locations of the grooves, the design depth and length of the groove and modification of the groove shape to smoothen the velocities flow. Finally, the data from BET was used with data from numerical analysis to obtain the lift force achieved by the vortex trap method to increase the lift of helicopter blade. Thus, the small increment of lift was achieved when applying groove on the upper surface of the retreating blade due to the small area contribution at high angle of attack 2011-11 Thesis http://eprints.uthm.edu.my/2694/ http://eprints.uthm.edu.my/2694/1/24p%20MOHD%20FAUZI%20YAAKUB.pdf text en public mphil masters Universiti Tun Hussein Malaysia Fakulti Kejuruteraan Mekanikal dan Pembuatan
institution Universiti Tun Hussein Onn Malaysia
collection UTHM Institutional Repository
language English
topic TL Motor vehicles
Aeronautics
Astronautics
TL Motor vehicles
Aeronautics
Astronautics
spellingShingle TL Motor vehicles
Aeronautics
Astronautics
TL Motor vehicles
Aeronautics
Astronautics
Yaakub, Mohd Fauzi
The effect of vortex trap on helicopter blade lift
description The 5-seater Aerospatiale AS350B helicopter has been chosen in this analysis in order to investigate the capabilities of the vortex trap in increasing the helicopter blade lift. Blade Element Theory (BET) was applied to scrutinize the lift force and angle of attack distribution along the helicopter blade. From BET, the retreating blade must operate at a higher coefficient of lift for the purpose to balance the lift force on both sides of the rotor. In the process of designing and analyzing the grooyer, , commercial CFD, Fluent 6.3 and pre-processor Gambit were utilised in order to investigate the effect of groove which was applied on the upper surface of the helicopter airfoil. The Shear-Stress Transport (SST) k - o turbulence model was utilized in this analysis because of its capability in producing the flow inside the groove and the ability on predicting the separation of the airfoil. The mesh sensitivity analysis had also been accounted in the numerical study. The optimization of the groove was done by analyzing the numbers and locations of the grooves, the design depth and length of the groove and modification of the groove shape to smoothen the velocities flow. Finally, the data from BET was used with data from numerical analysis to obtain the lift force achieved by the vortex trap method to increase the lift of helicopter blade. Thus, the small increment of lift was achieved when applying groove on the upper surface of the retreating blade due to the small area contribution at high angle of attack
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Yaakub, Mohd Fauzi
author_facet Yaakub, Mohd Fauzi
author_sort Yaakub, Mohd Fauzi
title The effect of vortex trap on helicopter blade lift
title_short The effect of vortex trap on helicopter blade lift
title_full The effect of vortex trap on helicopter blade lift
title_fullStr The effect of vortex trap on helicopter blade lift
title_full_unstemmed The effect of vortex trap on helicopter blade lift
title_sort effect of vortex trap on helicopter blade lift
granting_institution Universiti Tun Hussein Malaysia
granting_department Fakulti Kejuruteraan Mekanikal dan Pembuatan
publishDate 2011
url http://eprints.uthm.edu.my/2694/1/24p%20MOHD%20FAUZI%20YAAKUB.pdf
_version_ 1747830977841856512