Bayesian random forests for high-dimensional classification and regression with complete and incomplete microarray data
Random Forests (RF) are ensemble of trees methods widely used for data prediction, interpretation and variable selection purposes. The wide acceptance can be attributed to its robustness to high dimensionality problem. However, when the high-dimensional data is a sparse one, RF procedures are ineffi...
Saved in:
主要作者: | Oyebayo, Olaniran Ridwan |
---|---|
格式: | Thesis |
语言: | English English English |
出版: |
2018
|
主题: | |
在线阅读: | http://eprints.uthm.edu.my/326/1/24p%20OLANIRAN%20RIDWAN%20OYEBAYO.pdf http://eprints.uthm.edu.my/326/2/OLANIRAN%20RIDWAN%20OYEBAYO%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/326/3/OLANIRAN%20RIDWAN%20OYEBAYO%20WATERMARK.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Country Risk Modeling Using Bayesian Network
由: Asadi Ghajarloo, Siavash
出版: (2010) -
An Enhanced Probabilistic Neural Network For Pattern Classification
由: Chang, Roy Kwang Yang
出版: (2010) -
Enhanced Synergetic Classifier For Personal Emotion Classification
由: Wong , Wee Ming
出版: (2011) -
Building Multi-Dimensional Database For Inventory Systems Using Microsoft SQL Server Analysis Services (SSAS) 2008
由: Lotfi, Sahar
出版: (2012) -
SAR Image Classification Using Multifractal Using Dimensions and Binary Cliques Iterative Decomposition Method
由: Teng, Hse Tzia
出版: (2009)