Bayesian random forests for high-dimensional classification and regression with complete and incomplete microarray data
Random Forests (RF) are ensemble of trees methods widely used for data prediction, interpretation and variable selection purposes. The wide acceptance can be attributed to its robustness to high dimensionality problem. However, when the high-dimensional data is a sparse one, RF procedures are ineffi...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/326/1/24p%20OLANIRAN%20RIDWAN%20OYEBAYO.pdf http://eprints.uthm.edu.my/326/2/OLANIRAN%20RIDWAN%20OYEBAYO%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/326/3/OLANIRAN%20RIDWAN%20OYEBAYO%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|