Bayesian random forests for high-dimensional classification and regression with complete and incomplete microarray data
Random Forests (RF) are ensemble of trees methods widely used for data prediction, interpretation and variable selection purposes. The wide acceptance can be attributed to its robustness to high dimensionality problem. However, when the high-dimensional data is a sparse one, RF procedures are ineffi...
Saved in:
主要作者: | |
---|---|
格式: | Thesis |
語言: | English English English |
出版: |
2018
|
主題: | |
在線閱讀: | http://eprints.uthm.edu.my/326/1/24p%20OLANIRAN%20RIDWAN%20OYEBAYO.pdf http://eprints.uthm.edu.my/326/2/OLANIRAN%20RIDWAN%20OYEBAYO%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/326/3/OLANIRAN%20RIDWAN%20OYEBAYO%20WATERMARK.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|