Empirical analysis of rough set categorical clustering techniques based on rough purity and value set
Clustering a set of objects into homogeneous groups is a fundamental operation in data mining. Recently, attention has been put on categorical data clustering, where data objects are made up of non-numerical attributes. The implementation of several existing categorical clustering techniques is c...
Saved in:
主要作者: | Uddin, Jamal |
---|---|
格式: | Thesis |
语言: | English English |
出版: |
2017
|
主题: | |
在线阅读: | http://eprints.uthm.edu.my/336/1/JAMAL%20UDDIN%20WATERMARK.pdf http://eprints.uthm.edu.my/336/2/24p%20JAMAL%20UDDIN.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Rough set approach for categorical data clustering
由: Herawan, Tutut
出版: (2010) -
Rough Set Rules Extraction for Student Programming Skills
由: Kerwad, Mokhtar Massoud
出版: (2006) -
An enhancement of classification technique based on rough set theory for intrusion detection system application
由: Noor Suhana, Sulaiman
出版: (2019) -
New rough set based maximum partitioning attribute algorithm for categorical data clustering
由: Jomah Baroud, Muftah Mohamed
出版: (2022) -
Rough clustering for web transactions
由: Yanto, Iwan Tri Riyadi
出版: (2011)