Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy

Titanium alloys are widely used in the aerospace industry especially in airframes and engine components due to their high strength-weight ratio that is maintained at elevated temperature and their exceptional corrosion resistance. Nevertheless, titanium and its alloys are thought to be difficu...

Full description

Saved in:
Bibliographic Details
Main Author: Abd. Rahim, Erween
Format: Thesis
Language:English
Published: 2005
Subjects:
Online Access:http://eprints.uthm.edu.my/7939/1/24p%20ERWEEN%20ABD.%20RAHIM.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uthm-ep.7939
record_format uketd_dc
spelling my-uthm-ep.79392022-10-30T08:05:48Z Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy 2005-09 Abd. Rahim, Erween TJ Mechanical engineering and machinery TJ1125-1345 Machine shops and machine shop practice Titanium alloys are widely used in the aerospace industry especially in airframes and engine components due to their high strength-weight ratio that is maintained at elevated temperature and their exceptional corrosion resistance. Nevertheless, titanium and its alloys are thought to be difficult-to-machine material due to their poor thermal properties and highly chemical reactivity. In this study, Ti�6AI-4V has been drilled using single-layer PVD-HIS-TiAIN coated carbide, Type A (T12-A) and Type C (T12-C and T13-C), multi-layer PVD-HIS-Supemitride coated carbide, Type A (S 13-A) and Type C (S l2-C and S 13-C) and uncoated carbide Type B (U12-B and U13-B) and Type C (U12-C and U13-C) drills with different drill point geometry under various cutting speeds and constant feed rate. The tool performance, tool failure modes and tool wear mechanisms were analyzed under various cutting speeds. On the other hand, the cutting forces and the surface roughness were measured. In this study, Type C drills outperformed Type A and B drills in terms of tool life for almost all the cutting conditions tested. At low cutting speed of 25 m/min, the uncoated carbide tool of U12-C drills demonstrated the longest tool life, which resulted in low tool wear rate. The excellent improvement of both coated drills were mainly due to their ability of maintaining oxidation resistance and high hardness especially at elevated temperatures. On the other hand, poor performance of Type B drills was mainly due to premature tool failure caused by severe chipping and breakage. Non-uniform flank wear, chipping, cracking and catastrophic failure were the dominant failure modes of all tools under most cutting conditions tested. These failure modes were mainly associated with adhesion, diffusion and plastic deformation wear mechanisms. Based from the results obtained, it can be suggested that Type C drill was recommended and the lower cutting speed of 25 m/min should be employed in order to achieve high performance in drilling Ti-64. 2005-09 Thesis http://eprints.uthm.edu.my/7939/ http://eprints.uthm.edu.my/7939/1/24p%20ERWEEN%20ABD.%20RAHIM.pdf text en public mphil masters Universiti Teknologi Malaysia Fakulti Kejuruteraan Mekanikal
institution Universiti Tun Hussein Onn Malaysia
collection UTHM Institutional Repository
language English
topic TJ Mechanical engineering and machinery
TJ1125-1345 Machine shops and machine shop practice
spellingShingle TJ Mechanical engineering and machinery
TJ1125-1345 Machine shops and machine shop practice
Abd. Rahim, Erween
Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
description Titanium alloys are widely used in the aerospace industry especially in airframes and engine components due to their high strength-weight ratio that is maintained at elevated temperature and their exceptional corrosion resistance. Nevertheless, titanium and its alloys are thought to be difficult-to-machine material due to their poor thermal properties and highly chemical reactivity. In this study, Ti�6AI-4V has been drilled using single-layer PVD-HIS-TiAIN coated carbide, Type A (T12-A) and Type C (T12-C and T13-C), multi-layer PVD-HIS-Supemitride coated carbide, Type A (S 13-A) and Type C (S l2-C and S 13-C) and uncoated carbide Type B (U12-B and U13-B) and Type C (U12-C and U13-C) drills with different drill point geometry under various cutting speeds and constant feed rate. The tool performance, tool failure modes and tool wear mechanisms were analyzed under various cutting speeds. On the other hand, the cutting forces and the surface roughness were measured. In this study, Type C drills outperformed Type A and B drills in terms of tool life for almost all the cutting conditions tested. At low cutting speed of 25 m/min, the uncoated carbide tool of U12-C drills demonstrated the longest tool life, which resulted in low tool wear rate. The excellent improvement of both coated drills were mainly due to their ability of maintaining oxidation resistance and high hardness especially at elevated temperatures. On the other hand, poor performance of Type B drills was mainly due to premature tool failure caused by severe chipping and breakage. Non-uniform flank wear, chipping, cracking and catastrophic failure were the dominant failure modes of all tools under most cutting conditions tested. These failure modes were mainly associated with adhesion, diffusion and plastic deformation wear mechanisms. Based from the results obtained, it can be suggested that Type C drill was recommended and the lower cutting speed of 25 m/min should be employed in order to achieve high performance in drilling Ti-64.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Abd. Rahim, Erween
author_facet Abd. Rahim, Erween
author_sort Abd. Rahim, Erween
title Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
title_short Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
title_full Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
title_fullStr Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
title_full_unstemmed Performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
title_sort performance evaluation of uncoated and coated carbide tools when drilling titanium alloy
granting_institution Universiti Teknologi Malaysia
granting_department Fakulti Kejuruteraan Mekanikal
publishDate 2005
url http://eprints.uthm.edu.my/7939/1/24p%20ERWEEN%20ABD.%20RAHIM.pdf
_version_ 1776103274319970304