System identification of flexible plate structure

This research presented an investigation into the performance of system identification using parametric and nonparametric techniques for the identification of a two-dimensional flexible plate structure. The input and output data of the flexible system were acquired through the experimental work usin...

Full description

Saved in:
Bibliographic Details
Main Author: Madhloom Al-Khafaji, Ali Abdulhussain
Format: Thesis
Language:English
Published: 2010
Subjects:
Online Access:http://eprints.utm.my/id/eprint/12681/6/AliAbdulHussainMFKM2010.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.12681
record_format uketd_dc
spelling my-utm-ep.126812017-09-13T01:21:04Z System identification of flexible plate structure 2010 Madhloom Al-Khafaji, Ali Abdulhussain QA76 Computer software This research presented an investigation into the performance of system identification using parametric and nonparametric techniques for the identification of a two-dimensional flexible plate structure. The input and output data of the flexible system were acquired through the experimental work using National Instrumentation data acquisition system and flexible plate test rig. A sinusoidal force was applied to excite the flexible plate and the dynamic response of the system was investigated. The parametric models of the system were developed through Recursive Least Square (RLS) and Genetic Algorithms (GA) methods; whilst the nonparametric models of the system were developed using Multi-layer Perceptron Neural Networks (MLP-NN), Adaptive Elman Neural Networks (ENN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The validity of the models was investigated based on statistical measures, mean square error and one step ahead output prediction. A comparative performance of all the approaches developed in this research was presented and discussed. It has been demonstrated that the best mean squared error for RLS was 0.0095 and for GA algorithm was 0.000562. This indicates the superiority of GA as compared to RLS for the parametric modelling approaches. For the nonparametric modelling of the system, the best mean squared error for MLP-NN, ENN and ANFIS were 0.000163, 0.001700 and 0.0003978, respectively. The results demonstrated that MLP-NN shows superiority as compared to ENN and ANFIS. The investigation also revealed that, comparing to all modelling techniques, MLP-NN performed the best in terms of convergence time to an optimum solution. 2010 Thesis http://eprints.utm.my/id/eprint/12681/ http://eprints.utm.my/id/eprint/12681/6/AliAbdulHussainMFKM2010.pdf application/pdf en public masters Universiti Teknologi Malaysia, Faculty of Mechanical Engineering Faculty of Mechanical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA76 Computer software
spellingShingle QA76 Computer software
Madhloom Al-Khafaji, Ali Abdulhussain
System identification of flexible plate structure
description This research presented an investigation into the performance of system identification using parametric and nonparametric techniques for the identification of a two-dimensional flexible plate structure. The input and output data of the flexible system were acquired through the experimental work using National Instrumentation data acquisition system and flexible plate test rig. A sinusoidal force was applied to excite the flexible plate and the dynamic response of the system was investigated. The parametric models of the system were developed through Recursive Least Square (RLS) and Genetic Algorithms (GA) methods; whilst the nonparametric models of the system were developed using Multi-layer Perceptron Neural Networks (MLP-NN), Adaptive Elman Neural Networks (ENN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The validity of the models was investigated based on statistical measures, mean square error and one step ahead output prediction. A comparative performance of all the approaches developed in this research was presented and discussed. It has been demonstrated that the best mean squared error for RLS was 0.0095 and for GA algorithm was 0.000562. This indicates the superiority of GA as compared to RLS for the parametric modelling approaches. For the nonparametric modelling of the system, the best mean squared error for MLP-NN, ENN and ANFIS were 0.000163, 0.001700 and 0.0003978, respectively. The results demonstrated that MLP-NN shows superiority as compared to ENN and ANFIS. The investigation also revealed that, comparing to all modelling techniques, MLP-NN performed the best in terms of convergence time to an optimum solution.
format Thesis
qualification_level Master's degree
author Madhloom Al-Khafaji, Ali Abdulhussain
author_facet Madhloom Al-Khafaji, Ali Abdulhussain
author_sort Madhloom Al-Khafaji, Ali Abdulhussain
title System identification of flexible plate structure
title_short System identification of flexible plate structure
title_full System identification of flexible plate structure
title_fullStr System identification of flexible plate structure
title_full_unstemmed System identification of flexible plate structure
title_sort system identification of flexible plate structure
granting_institution Universiti Teknologi Malaysia, Faculty of Mechanical Engineering
granting_department Faculty of Mechanical Engineering
publishDate 2010
url http://eprints.utm.my/id/eprint/12681/6/AliAbdulHussainMFKM2010.pdf
_version_ 1747814945523761152