An integral equation method for conformal mapping of doubly connected regions via the Kerzman-Stein and the Neumann Kernels
An integral equation method based on the Kerzman-Stein and the Neumann kernels for conformal mapping of doubly connected regions onto an annulus is presented. The theoretical development is based on the boundary integral equations for conformal mapping of doubly connected regions derived by Murid an...
Saved in:
主要作者: | Mohamed, Nurul Akmal |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2007
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/2153/1/NurulAkmalMohamedMFS20071.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Numerical conformal mapping for exterior regions via the Kerzman-Stein Kernel and the cauchy's integral formula
由: Ranom, Rahifa
出版: (2005) -
Solving mixed dirichlet-neumann problem for laplace's equation in unbounded doubly connected region via integral equation with the generalized neumann kernel
由: Mohammed Hassan Zangana, Hemin
出版: (2014) -
Solving mixed boundary value problem VIA an integral equation with the generalized neumann kernel in bounded doubly connected region
由: Salim, Sarfraz Hassan
出版: (2012) -
Verification of boundary integral equation for conformal mapping of doubly connected regions onto a disk with a slit
由: Lai, Tze Wee
出版: (2010) -
Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
由: Aspon, Siti Zulaiha
出版: (2015)