Evaluation of machine learning techniques for imbalanced data in IDS
Network Intrusion Detection System (IDS) is an automated system that can detect a malicious traffic and it plays a critical role in a network. In recent years, machine learning algorithms have been developed and used to detect network intrusion. Most standard machine learning algorithms often give h...
محفوظ في:
المؤلف الرئيسي: | Mokaramian, Shahram |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/37080/5/ShahramMokaramianMFSKSM2013.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A direct ensemble classifier for learning imbalanced multiclass data
بواسطة: Samry @ Mohd Shamrie Sainin
منشور في: (2013) -
Performance evaluation of caching techniques for video on demand workload in named data network
بواسطة: Taher, Sadaq Jebur
منشور في: (2016) -
Network problems detection and classification by analyzing syslog data
بواسطة: Jarghon, Fidaa A. M.
منشور في: (2016) -
An efficient pending interest table control management in named data network
بواسطة: Alubady, Raaid Nasur Kadham
منشور في: (2017) -
Decision framework on selecting the optimal subjective weighting method for evaluating e-learning approaches
بواسطة: Mohammed, Husam Jasim
منشور في: (2018)