Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites

Palm press fibers of Tenera and Dura palm oil species of Malaysia and Nigeria respectively were used to prepare poly(e-caprolactone)/poly(lactic acid) blend composites. All the blends and composites were produced using the twin screw extruder and the test specimens were fabricated using the injectio...

Full description

Saved in:
Bibliographic Details
Main Author: Ibrahim, Akos Noel
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.utm.my/id/eprint/38956/5/AkosNoelIbrahimPFKK2013.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.38956
record_format uketd_dc
spelling my-utm-ep.389562017-06-22T02:26:46Z Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites 2013-09 Ibrahim, Akos Noel TP Chemical technology Palm press fibers of Tenera and Dura palm oil species of Malaysia and Nigeria respectively were used to prepare poly(e-caprolactone)/poly(lactic acid) blend composites. All the blends and composites were produced using the twin screw extruder and the test specimens were fabricated using the injection molding machine. The morphology, mechanical, thermal, water absorption and biodegradation properties of the composites were studied. Fourier Transforms Infrared (FTIR) revealed that the hemicelluloses were completely removed after alkali fiber treatment. Field Emission Scanning Electron Microscope (FESEM) showed the improvement of fiber/matrix adhesion and the confirmation of compatibilization in the blend and composites. X-ray Diffraction (XRD) confirmed the increase in crystallinity of the fibers after alkali treatment. Compatibilization and fiber reinforcement significantly enhanced the mechanical and thermal properties, biodegradation and char yield of the composites. The Tenera composites exhibited higher mechanical properties than the Dura composites, while the Dura composites were thermally more stable than the Tenera composites. The Dura fibers also increased the percentage crystallinity of the composites more than the Tenera fibers. Compatibilization and fiber reinforcement increased the rate of biodegradation of the blend and composites. There was no significant difference in the biodegradation rate between the Tenera and Dura composites. The optimum properties were obtained for Tenera and Dura composites at 15 wt. % fiber loading. In view of the above, the composite was adjudged as the best formulation for both fiber reinforcements. 2013-09 Thesis http://eprints.utm.my/id/eprint/38956/ http://eprints.utm.my/id/eprint/38956/5/AkosNoelIbrahimPFKK2013.pdf application/pdf en public phd doctoral Universiti Teknologi Malaysia, Faculty of Chemical Engineering Faculty of Chemical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Ibrahim, Akos Noel
Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
description Palm press fibers of Tenera and Dura palm oil species of Malaysia and Nigeria respectively were used to prepare poly(e-caprolactone)/poly(lactic acid) blend composites. All the blends and composites were produced using the twin screw extruder and the test specimens were fabricated using the injection molding machine. The morphology, mechanical, thermal, water absorption and biodegradation properties of the composites were studied. Fourier Transforms Infrared (FTIR) revealed that the hemicelluloses were completely removed after alkali fiber treatment. Field Emission Scanning Electron Microscope (FESEM) showed the improvement of fiber/matrix adhesion and the confirmation of compatibilization in the blend and composites. X-ray Diffraction (XRD) confirmed the increase in crystallinity of the fibers after alkali treatment. Compatibilization and fiber reinforcement significantly enhanced the mechanical and thermal properties, biodegradation and char yield of the composites. The Tenera composites exhibited higher mechanical properties than the Dura composites, while the Dura composites were thermally more stable than the Tenera composites. The Dura fibers also increased the percentage crystallinity of the composites more than the Tenera fibers. Compatibilization and fiber reinforcement increased the rate of biodegradation of the blend and composites. There was no significant difference in the biodegradation rate between the Tenera and Dura composites. The optimum properties were obtained for Tenera and Dura composites at 15 wt. % fiber loading. In view of the above, the composite was adjudged as the best formulation for both fiber reinforcements.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Ibrahim, Akos Noel
author_facet Ibrahim, Akos Noel
author_sort Ibrahim, Akos Noel
title Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
title_short Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
title_full Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
title_fullStr Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
title_full_unstemmed Preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
title_sort preparation and characterization of oil palm fiber reinforced poly(e-caprolactone)/poly(lactic acid) composites
granting_institution Universiti Teknologi Malaysia, Faculty of Chemical Engineering
granting_department Faculty of Chemical Engineering
publishDate 2013
url http://eprints.utm.my/id/eprint/38956/5/AkosNoelIbrahimPFKK2013.pdf
_version_ 1747816534593503232