Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model
The reason of the power transformer (PT) monitoring is to prevent the failure of the PT. There are many methods to detect the failure of the PT. The methods include Conventional Monitoring System (CMS), Polarization Depolarization Current (PDC) Analysis, and Hidden Markov Model (HMM). The CMS gives...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/48586/1/LooYauTengMFKE2014.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-utm-ep.48586 |
---|---|
record_format |
uketd_dc |
spelling |
my-utm-ep.485862017-08-02T07:38:58Z Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model 2014 Loo, Yau Teng TJ Mechanical engineering and machinery The reason of the power transformer (PT) monitoring is to prevent the failure of the PT. There are many methods to detect the failure of the PT. The methods include Conventional Monitoring System (CMS), Polarization Depolarization Current (PDC) Analysis, and Hidden Markov Model (HMM). The CMS gives the current condition of PT but it cannot give reliable failure prediction. The PDC involves complicated setup at site and the measurement is done when the PT is off line (shutdown) which is not preferable. HMM is a prediction model based on dissolved gas analysis (DGA) database. Its accuracy is believed to be further improved when more DGA data are available with the passing of time. The main focus of this project is to obtain the PT failure time estimates with an error of less than or equal to 10%. Mathematical models were used to predict the PT condition at several stages by knowing the current DGA data. Result shows the accuracy of 90% in transformer level prediction, means that 9 accurate results out of 10 transformers tested. The technique can be used to predict the transformer deterioration level and to prevent transformer failure which can lead to tremendous losses to company. The result will assist the maintenance personnel to make various maintenance decisions with cost effective way. 2014 Thesis http://eprints.utm.my/id/eprint/48586/ http://eprints.utm.my/id/eprint/48586/1/LooYauTengMFKE2014.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:81881?queryType=vitalDismax&query=Power+transformers+condition+monitoring+using+dissolved+gas+analysis+and+hidden+markov+prediction+model&public=true masters Universiti Teknologi Malaysia, Faculty of Electrical Engineering Faculty of Electrical Engineering |
institution |
Universiti Teknologi Malaysia |
collection |
UTM Institutional Repository |
language |
English |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Loo, Yau Teng Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
description |
The reason of the power transformer (PT) monitoring is to prevent the failure of the PT. There are many methods to detect the failure of the PT. The methods include Conventional Monitoring System (CMS), Polarization Depolarization Current (PDC) Analysis, and Hidden Markov Model (HMM). The CMS gives the current condition of PT but it cannot give reliable failure prediction. The PDC involves complicated setup at site and the measurement is done when the PT is off line (shutdown) which is not preferable. HMM is a prediction model based on dissolved gas analysis (DGA) database. Its accuracy is believed to be further improved when more DGA data are available with the passing of time. The main focus of this project is to obtain the PT failure time estimates with an error of less than or equal to 10%. Mathematical models were used to predict the PT condition at several stages by knowing the current DGA data. Result shows the accuracy of 90% in transformer level prediction, means that 9 accurate results out of 10 transformers tested. The technique can be used to predict the transformer deterioration level and to prevent transformer failure which can lead to tremendous losses to company. The result will assist the maintenance personnel to make various maintenance decisions with cost effective way. |
format |
Thesis |
qualification_level |
Master's degree |
author |
Loo, Yau Teng |
author_facet |
Loo, Yau Teng |
author_sort |
Loo, Yau Teng |
title |
Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
title_short |
Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
title_full |
Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
title_fullStr |
Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
title_full_unstemmed |
Power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
title_sort |
power transformers condition monitoring using dissolved gas analysis and hidden markov prediction model |
granting_institution |
Universiti Teknologi Malaysia, Faculty of Electrical Engineering |
granting_department |
Faculty of Electrical Engineering |
publishDate |
2014 |
url |
http://eprints.utm.my/id/eprint/48586/1/LooYauTengMFKE2014.pdf |
_version_ |
1747817426606620672 |